from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(431, base_ring=CyclotomicField(430))
M = H._module
chi = DirichletCharacter(H, M([361]))
pari: [g,chi] = znchar(Mod(73,431))
χ431(7,⋅)
χ431(13,⋅)
χ431(14,⋅)
χ431(17,⋅)
χ431(21,⋅)
χ431(28,⋅)
χ431(31,⋅)
χ431(34,⋅)
χ431(35,⋅)
χ431(37,⋅)
χ431(39,⋅)
χ431(42,⋅)
χ431(43,⋅)
χ431(51,⋅)
χ431(52,⋅)
χ431(56,⋅)
χ431(62,⋅)
χ431(63,⋅)
χ431(65,⋅)
χ431(67,⋅)
χ431(68,⋅)
χ431(70,⋅)
χ431(71,⋅)
χ431(73,⋅)
χ431(74,⋅)
χ431(77,⋅)
χ431(78,⋅)
χ431(79,⋅)
χ431(83,⋅)
χ431(84,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
7 → e(430361)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ431(73,a) |
−1 | 1 | e(4330) | e(433) | e(4317) | e(21526) | e(4333) | e(430361) | e(434) | e(436) | e(215176) | e(215199) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)