Properties

Label 431.13
Modulus 431431
Conductor 431431
Order 430430
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(430))
 
M = H._module
 
chi = DirichletCharacter(H, M([167]))
 
pari: [g,chi] = znchar(Mod(13,431))
 

Basic properties

Modulus: 431431
Conductor: 431431
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 430430
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 431.h

χ431(7,)\chi_{431}(7,\cdot) χ431(13,)\chi_{431}(13,\cdot) χ431(14,)\chi_{431}(14,\cdot) χ431(17,)\chi_{431}(17,\cdot) χ431(21,)\chi_{431}(21,\cdot) χ431(28,)\chi_{431}(28,\cdot) χ431(31,)\chi_{431}(31,\cdot) χ431(34,)\chi_{431}(34,\cdot) χ431(35,)\chi_{431}(35,\cdot) χ431(37,)\chi_{431}(37,\cdot) χ431(39,)\chi_{431}(39,\cdot) χ431(42,)\chi_{431}(42,\cdot) χ431(43,)\chi_{431}(43,\cdot) χ431(51,)\chi_{431}(51,\cdot) χ431(52,)\chi_{431}(52,\cdot) χ431(56,)\chi_{431}(56,\cdot) χ431(62,)\chi_{431}(62,\cdot) χ431(63,)\chi_{431}(63,\cdot) χ431(65,)\chi_{431}(65,\cdot) χ431(67,)\chi_{431}(67,\cdot) χ431(68,)\chi_{431}(68,\cdot) χ431(70,)\chi_{431}(70,\cdot) χ431(71,)\chi_{431}(71,\cdot) χ431(73,)\chi_{431}(73,\cdot) χ431(74,)\chi_{431}(74,\cdot) χ431(77,)\chi_{431}(77,\cdot) χ431(78,)\chi_{431}(78,\cdot) χ431(79,)\chi_{431}(79,\cdot) χ431(83,)\chi_{431}(83,\cdot) χ431(84,)\chi_{431}(84,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ215)\Q(\zeta_{215})
Fixed field: Number field defined by a degree 430 polynomial (not computed)

Values on generators

77e(167430)e\left(\frac{167}{430}\right)

First values

aa 1-111223344556677889910101111
χ431(13,a) \chi_{ 431 }(13, a) 1-111e(1943)e\left(\frac{19}{43}\right)e(3243)e\left(\frac{32}{43}\right)e(3843)e\left(\frac{38}{43}\right)e(177215)e\left(\frac{177}{215}\right)e(843)e\left(\frac{8}{43}\right)e(167430)e\left(\frac{167}{430}\right)e(1443)e\left(\frac{14}{43}\right)e(2143)e\left(\frac{21}{43}\right)e(57215)e\left(\frac{57}{215}\right)e(73215)e\left(\frac{73}{215}\right)
sage: chi.jacobi_sum(n)
 
χ431(13,a)   \chi_{ 431 }(13,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ431(13,))   \tau_{ a }( \chi_{ 431 }(13,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ431(13,),χ431(n,))   J(\chi_{ 431 }(13,·),\chi_{ 431 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ431(13,))  K(a,b,\chi_{ 431 }(13,·)) \; at   a,b=\; a,b = e.g. 1,2