L(s) = 1 | + (−0.719 + 0.694i)2-s + (−0.374 + 0.927i)3-s + (0.0348 − 0.999i)4-s + (−0.374 − 0.927i)6-s + (−0.5 − 0.866i)7-s + (0.669 + 0.743i)8-s + (−0.719 − 0.694i)9-s + (0.913 − 0.406i)11-s + (0.913 + 0.406i)12-s + (−0.241 + 0.970i)13-s + (0.961 + 0.275i)14-s + (−0.997 − 0.0697i)16-s + (−0.882 − 0.469i)17-s + 18-s + (0.990 − 0.139i)21-s + (−0.374 + 0.927i)22-s + ⋯ |
L(s) = 1 | + (−0.719 + 0.694i)2-s + (−0.374 + 0.927i)3-s + (0.0348 − 0.999i)4-s + (−0.374 − 0.927i)6-s + (−0.5 − 0.866i)7-s + (0.669 + 0.743i)8-s + (−0.719 − 0.694i)9-s + (0.913 − 0.406i)11-s + (0.913 + 0.406i)12-s + (−0.241 + 0.970i)13-s + (0.961 + 0.275i)14-s + (−0.997 − 0.0697i)16-s + (−0.882 − 0.469i)17-s + 18-s + (0.990 − 0.139i)21-s + (−0.374 + 0.927i)22-s + ⋯ |
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.748−0.663i)Λ(1−s)
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.748−0.663i)Λ(1−s)
Degree: |
1 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.748−0.663i
|
Analytic conductor: |
2.20589 |
Root analytic conductor: |
2.20589 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(196,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 475, (0: ), −0.748−0.663i)
|
Particular Values
L(21) |
≈ |
−0.05253337749+0.1385434168i |
L(21) |
≈ |
−0.05253337749+0.1385434168i |
L(1) |
≈ |
0.4313615448+0.2404601602i |
L(1) |
≈ |
0.4313615448+0.2404601602i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(−0.719+0.694i)T |
| 3 | 1+(−0.374+0.927i)T |
| 7 | 1+(−0.5−0.866i)T |
| 11 | 1+(0.913−0.406i)T |
| 13 | 1+(−0.241+0.970i)T |
| 17 | 1+(−0.882−0.469i)T |
| 23 | 1+(0.559+0.829i)T |
| 29 | 1+(−0.882+0.469i)T |
| 31 | 1+(−0.978+0.207i)T |
| 37 | 1+(−0.809+0.587i)T |
| 41 | 1+(−0.997−0.0697i)T |
| 43 | 1+(−0.939+0.342i)T |
| 47 | 1+(−0.882+0.469i)T |
| 53 | 1+(0.0348−0.999i)T |
| 59 | 1+(0.438+0.898i)T |
| 61 | 1+(0.559+0.829i)T |
| 67 | 1+(0.990+0.139i)T |
| 71 | 1+(−0.615−0.788i)T |
| 73 | 1+(−0.241−0.970i)T |
| 79 | 1+(−0.374+0.927i)T |
| 83 | 1+(−0.978+0.207i)T |
| 89 | 1+(−0.997+0.0697i)T |
| 97 | 1+(0.990−0.139i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.02639780507621663590190077514, −22.31571189028457286039913334007, −21.81737197361860149161748653190, −20.325522209295528886645945736656, −19.82729224801404812703448520850, −18.9012970103946024446034442442, −18.36299185584991089844940321570, −17.40002407287870745384281345058, −16.91028249187050615497791339901, −15.70510375332290552026568538256, −14.627929756454048465485894803305, −13.11909842961613971592312353481, −12.75901863495594029312712255725, −11.89160465161031885732242272297, −11.14072508542218159627440048526, −10.08275227742798321887978756880, −8.99172035752726310820232725992, −8.32464034518867977667764239458, −7.151687376860975905943411935497, −6.42129417504332205416141301925, −5.18372097952543026436181452236, −3.63439367932832187606482661607, −2.46904165148702125198357899699, −1.66371633453568931943032447992, −0.1093681537676066674508724041,
1.50174552266659996073792961980, 3.42006723370896710948496074773, 4.424099110634771590235667010418, 5.40476148479766796023590292347, 6.61953294644362502085627579857, 7.0592214572885186096590449523, 8.64550329849904020680834625437, 9.32928575609214847452241507314, 10.003672040414086624391314226531, 11.078856589456583191938854494460, 11.60490200286928457590399062003, 13.36161806082102307096601790501, 14.249066108110095739646738823989, 15.02198139737859871986087153008, 16.041333305891176722872326492, 16.6651370657137804092603848963, 17.13951956776382978534038267398, 18.127247421048697956258432553285, 19.34168958916650879883929796640, 19.89927858260795205501044704615, 20.82928895840679153030550775588, 22.0507016735309753778527589099, 22.641737988903709613137662229952, 23.63306317819484543009187866319, 24.241808646473000915070855389833