L(s) = 1 | + (−0.719 − 0.694i)2-s + (−0.374 − 0.927i)3-s + (0.0348 + 0.999i)4-s + (−0.374 + 0.927i)6-s + (−0.5 + 0.866i)7-s + (0.669 − 0.743i)8-s + (−0.719 + 0.694i)9-s + (0.913 + 0.406i)11-s + (0.913 − 0.406i)12-s + (−0.241 − 0.970i)13-s + (0.961 − 0.275i)14-s + (−0.997 + 0.0697i)16-s + (−0.882 + 0.469i)17-s + 18-s + (0.990 + 0.139i)21-s + (−0.374 − 0.927i)22-s + ⋯ |
L(s) = 1 | + (−0.719 − 0.694i)2-s + (−0.374 − 0.927i)3-s + (0.0348 + 0.999i)4-s + (−0.374 + 0.927i)6-s + (−0.5 + 0.866i)7-s + (0.669 − 0.743i)8-s + (−0.719 + 0.694i)9-s + (0.913 + 0.406i)11-s + (0.913 − 0.406i)12-s + (−0.241 − 0.970i)13-s + (0.961 − 0.275i)14-s + (−0.997 + 0.0697i)16-s + (−0.882 + 0.469i)17-s + 18-s + (0.990 + 0.139i)21-s + (−0.374 − 0.927i)22-s + ⋯ |
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.748+0.663i)Λ(1−s)
Λ(s)=(=(475s/2ΓR(s)L(s)(−0.748+0.663i)Λ(1−s)
Degree: |
1 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.748+0.663i
|
Analytic conductor: |
2.20589 |
Root analytic conductor: |
2.20589 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(206,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 475, (0: ), −0.748+0.663i)
|
Particular Values
L(21) |
≈ |
−0.05253337749−0.1385434168i |
L(21) |
≈ |
−0.05253337749−0.1385434168i |
L(1) |
≈ |
0.4313615448−0.2404601602i |
L(1) |
≈ |
0.4313615448−0.2404601602i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+(−0.719−0.694i)T |
| 3 | 1+(−0.374−0.927i)T |
| 7 | 1+(−0.5+0.866i)T |
| 11 | 1+(0.913+0.406i)T |
| 13 | 1+(−0.241−0.970i)T |
| 17 | 1+(−0.882+0.469i)T |
| 23 | 1+(0.559−0.829i)T |
| 29 | 1+(−0.882−0.469i)T |
| 31 | 1+(−0.978−0.207i)T |
| 37 | 1+(−0.809−0.587i)T |
| 41 | 1+(−0.997+0.0697i)T |
| 43 | 1+(−0.939−0.342i)T |
| 47 | 1+(−0.882−0.469i)T |
| 53 | 1+(0.0348+0.999i)T |
| 59 | 1+(0.438−0.898i)T |
| 61 | 1+(0.559−0.829i)T |
| 67 | 1+(0.990−0.139i)T |
| 71 | 1+(−0.615+0.788i)T |
| 73 | 1+(−0.241+0.970i)T |
| 79 | 1+(−0.374−0.927i)T |
| 83 | 1+(−0.978−0.207i)T |
| 89 | 1+(−0.997−0.0697i)T |
| 97 | 1+(0.990+0.139i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.241808646473000915070855389833, −23.63306317819484543009187866319, −22.641737988903709613137662229952, −22.0507016735309753778527589099, −20.82928895840679153030550775588, −19.89927858260795205501044704615, −19.34168958916650879883929796640, −18.127247421048697956258432553285, −17.13951956776382978534038267398, −16.6651370657137804092603848963, −16.041333305891176722872326492, −15.02198139737859871986087153008, −14.249066108110095739646738823989, −13.36161806082102307096601790501, −11.60490200286928457590399062003, −11.078856589456583191938854494460, −10.003672040414086624391314226531, −9.32928575609214847452241507314, −8.64550329849904020680834625437, −7.0592214572885186096590449523, −6.61953294644362502085627579857, −5.40476148479766796023590292347, −4.424099110634771590235667010418, −3.42006723370896710948496074773, −1.50174552266659996073792961980,
0.1093681537676066674508724041, 1.66371633453568931943032447992, 2.46904165148702125198357899699, 3.63439367932832187606482661607, 5.18372097952543026436181452236, 6.42129417504332205416141301925, 7.151687376860975905943411935497, 8.32464034518867977667764239458, 8.99172035752726310820232725992, 10.08275227742798321887978756880, 11.14072508542218159627440048526, 11.89160465161031885732242272297, 12.75901863495594029312712255725, 13.11909842961613971592312353481, 14.627929756454048465485894803305, 15.70510375332290552026568538256, 16.91028249187050615497791339901, 17.40002407287870745384281345058, 18.36299185584991089844940321570, 18.9012970103946024446034442442, 19.82729224801404812703448520850, 20.325522209295528886645945736656, 21.81737197361860149161748653190, 22.31571189028457286039913334007, 23.02639780507621663590190077514