L(s) = 1 | + (−0.719 − 0.694i)2-s + (−0.374 − 0.927i)3-s + (0.0348 + 0.999i)4-s + (−0.374 + 0.927i)6-s + (−0.5 + 0.866i)7-s + (0.669 − 0.743i)8-s + (−0.719 + 0.694i)9-s + (0.913 + 0.406i)11-s + (0.913 − 0.406i)12-s + (−0.241 − 0.970i)13-s + (0.961 − 0.275i)14-s + (−0.997 + 0.0697i)16-s + (−0.882 + 0.469i)17-s + 18-s + (0.990 + 0.139i)21-s + (−0.374 − 0.927i)22-s + ⋯ |
L(s) = 1 | + (−0.719 − 0.694i)2-s + (−0.374 − 0.927i)3-s + (0.0348 + 0.999i)4-s + (−0.374 + 0.927i)6-s + (−0.5 + 0.866i)7-s + (0.669 − 0.743i)8-s + (−0.719 + 0.694i)9-s + (0.913 + 0.406i)11-s + (0.913 − 0.406i)12-s + (−0.241 − 0.970i)13-s + (0.961 − 0.275i)14-s + (−0.997 + 0.0697i)16-s + (−0.882 + 0.469i)17-s + 18-s + (0.990 + 0.139i)21-s + (−0.374 − 0.927i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.748 + 0.663i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.748 + 0.663i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.05253337749 - 0.1385434168i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.05253337749 - 0.1385434168i\) |
\(L(1)\) |
\(\approx\) |
\(0.4313615448 - 0.2404601602i\) |
\(L(1)\) |
\(\approx\) |
\(0.4313615448 - 0.2404601602i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.719 - 0.694i)T \) |
| 3 | \( 1 + (-0.374 - 0.927i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.241 - 0.970i)T \) |
| 17 | \( 1 + (-0.882 + 0.469i)T \) |
| 23 | \( 1 + (0.559 - 0.829i)T \) |
| 29 | \( 1 + (-0.882 - 0.469i)T \) |
| 31 | \( 1 + (-0.978 - 0.207i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.997 + 0.0697i)T \) |
| 43 | \( 1 + (-0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.882 - 0.469i)T \) |
| 53 | \( 1 + (0.0348 + 0.999i)T \) |
| 59 | \( 1 + (0.438 - 0.898i)T \) |
| 61 | \( 1 + (0.559 - 0.829i)T \) |
| 67 | \( 1 + (0.990 - 0.139i)T \) |
| 71 | \( 1 + (-0.615 + 0.788i)T \) |
| 73 | \( 1 + (-0.241 + 0.970i)T \) |
| 79 | \( 1 + (-0.374 - 0.927i)T \) |
| 83 | \( 1 + (-0.978 - 0.207i)T \) |
| 89 | \( 1 + (-0.997 - 0.0697i)T \) |
| 97 | \( 1 + (0.990 + 0.139i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.241808646473000915070855389833, −23.63306317819484543009187866319, −22.641737988903709613137662229952, −22.0507016735309753778527589099, −20.82928895840679153030550775588, −19.89927858260795205501044704615, −19.34168958916650879883929796640, −18.127247421048697956258432553285, −17.13951956776382978534038267398, −16.6651370657137804092603848963, −16.041333305891176722872326492, −15.02198139737859871986087153008, −14.249066108110095739646738823989, −13.36161806082102307096601790501, −11.60490200286928457590399062003, −11.078856589456583191938854494460, −10.003672040414086624391314226531, −9.32928575609214847452241507314, −8.64550329849904020680834625437, −7.0592214572885186096590449523, −6.61953294644362502085627579857, −5.40476148479766796023590292347, −4.424099110634771590235667010418, −3.42006723370896710948496074773, −1.50174552266659996073792961980,
0.1093681537676066674508724041, 1.66371633453568931943032447992, 2.46904165148702125198357899699, 3.63439367932832187606482661607, 5.18372097952543026436181452236, 6.42129417504332205416141301925, 7.151687376860975905943411935497, 8.32464034518867977667764239458, 8.99172035752726310820232725992, 10.08275227742798321887978756880, 11.14072508542218159627440048526, 11.89160465161031885732242272297, 12.75901863495594029312712255725, 13.11909842961613971592312353481, 14.627929756454048465485894803305, 15.70510375332290552026568538256, 16.91028249187050615497791339901, 17.40002407287870745384281345058, 18.36299185584991089844940321570, 18.9012970103946024446034442442, 19.82729224801404812703448520850, 20.325522209295528886645945736656, 21.81737197361860149161748653190, 22.31571189028457286039913334007, 23.02639780507621663590190077514