Properties

Label 1-680-680.99-r0-0-0
Degree 11
Conductor 680680
Sign 0.507+0.861i0.507 + 0.861i
Analytic cond. 3.157903.15790
Root an. cond. 3.157903.15790
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.923 + 0.382i)3-s + (0.382 + 0.923i)7-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s i·13-s + (0.707 − 0.707i)19-s i·21-s + (−0.923 + 0.382i)23-s + (0.382 + 0.923i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s + 33-s + (−0.923 − 0.382i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯
L(s)  = 1  + (0.923 + 0.382i)3-s + (0.382 + 0.923i)7-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s i·13-s + (0.707 − 0.707i)19-s i·21-s + (−0.923 + 0.382i)23-s + (0.382 + 0.923i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s + 33-s + (−0.923 − 0.382i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯

Functional equation

Λ(s)=(680s/2ΓR(s)L(s)=((0.507+0.861i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.507 + 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(680s/2ΓR(s)L(s)=((0.507+0.861i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.507 + 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 680680    =    235172^{3} \cdot 5 \cdot 17
Sign: 0.507+0.861i0.507 + 0.861i
Analytic conductor: 3.157903.15790
Root analytic conductor: 3.157903.15790
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ680(99,)\chi_{680} (99, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 680, (0: ), 0.507+0.861i)(1,\ 680,\ (0:\ ),\ 0.507 + 0.861i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.898812582+1.085159231i1.898812582 + 1.085159231i
L(12)L(\frac12) \approx 1.898812582+1.085159231i1.898812582 + 1.085159231i
L(1)L(1) \approx 1.504225021+0.4359191661i1.504225021 + 0.4359191661i
L(1)L(1) \approx 1.504225021+0.4359191661i1.504225021 + 0.4359191661i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
7 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
11 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
13 1iT 1 - iT
19 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
23 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
29 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
31 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
37 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
41 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
43 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
47 1iT 1 - iT
53 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
59 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
61 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
67 1+T 1 + T
71 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
73 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
79 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1iT 1 - iT
97 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.67938652403644107910657409010, −21.72158455462695794133550197750, −20.61294783975787240242792858734, −20.11437193103012544667045879395, −19.66477336791960724666403324524, −18.4180198220760929012260273189, −17.85770361831430253778915156564, −16.917409639640546478852934477492, −15.939807187053406182297978827327, −14.90171292296075130289531328956, −14.25438458616154276606360923765, −13.66560941341118973654992445012, −12.61203546317272801485624021934, −11.95330714555306782379533821236, −10.608724985169121560657723736316, −9.94050926501760237414389100534, −8.91404027588460749380482729135, −8.0227437983278026209114162731, −7.323226184107394599188722060114, −6.49699492585795119391823017103, −5.14015768660608953191845669466, −3.92645658131525988397380198689, −3.34513546845489076342838796690, −1.93906179597532448041649873998, −1.06187134536562106210013781757, 1.58245879633643745886045194341, 2.42041813664042527841754523972, 3.55547282536182468811251642163, 4.402371177035344702472447572209, 5.46477970040943145226391651260, 6.59248386981995605198153385992, 7.65707868395384619335871624737, 8.62597537959503215301993553734, 9.20305527661276094856345386867, 9.92259192184355437461065173275, 11.31734929946912320679549608127, 11.81731226075914478568849163340, 13.01462764584449136750832572147, 14.06805016682520641442377757166, 14.40746688757498264634187925692, 15.47580004397535763731025518177, 16.03454446870892622541883554003, 17.05118468860295077528526639666, 18.13237086725818642391038489555, 18.935107468268763537688419778863, 19.60667244037059327838621014110, 20.38418608370430755108320178367, 21.45882938174666402536697810374, 21.7277697989182453352371506018, 22.601757715330085022445887990056

Graph of the ZZ-function along the critical line