L(s) = 1 | + (0.923 + 0.382i)3-s + (0.382 + 0.923i)7-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s − i·13-s + (0.707 − 0.707i)19-s − i·21-s + (−0.923 + 0.382i)23-s + (0.382 + 0.923i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s + 33-s + (−0.923 − 0.382i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)3-s + (0.382 + 0.923i)7-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s − i·13-s + (0.707 − 0.707i)19-s − i·21-s + (−0.923 + 0.382i)23-s + (0.382 + 0.923i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s + 33-s + (−0.923 − 0.382i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯ |
Λ(s)=(=(680s/2ΓR(s)L(s)(0.507+0.861i)Λ(1−s)
Λ(s)=(=(680s/2ΓR(s)L(s)(0.507+0.861i)Λ(1−s)
Degree: |
1 |
Conductor: |
680
= 23⋅5⋅17
|
Sign: |
0.507+0.861i
|
Analytic conductor: |
3.15790 |
Root analytic conductor: |
3.15790 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ680(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 680, (0: ), 0.507+0.861i)
|
Particular Values
L(21) |
≈ |
1.898812582+1.085159231i |
L(21) |
≈ |
1.898812582+1.085159231i |
L(1) |
≈ |
1.504225021+0.4359191661i |
L(1) |
≈ |
1.504225021+0.4359191661i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(0.923+0.382i)T |
| 7 | 1+(0.382+0.923i)T |
| 11 | 1+(0.923−0.382i)T |
| 13 | 1−iT |
| 19 | 1+(0.707−0.707i)T |
| 23 | 1+(−0.923+0.382i)T |
| 29 | 1+(0.382−0.923i)T |
| 31 | 1+(−0.923−0.382i)T |
| 37 | 1+(−0.923−0.382i)T |
| 41 | 1+(0.382+0.923i)T |
| 43 | 1+(−0.707−0.707i)T |
| 47 | 1−iT |
| 53 | 1+(0.707−0.707i)T |
| 59 | 1+(−0.707−0.707i)T |
| 61 | 1+(0.382+0.923i)T |
| 67 | 1+T |
| 71 | 1+(0.923+0.382i)T |
| 73 | 1+(−0.382+0.923i)T |
| 79 | 1+(−0.923+0.382i)T |
| 83 | 1+(0.707−0.707i)T |
| 89 | 1−iT |
| 97 | 1+(0.382−0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−22.67938652403644107910657409010, −21.72158455462695794133550197750, −20.61294783975787240242792858734, −20.11437193103012544667045879395, −19.66477336791960724666403324524, −18.4180198220760929012260273189, −17.85770361831430253778915156564, −16.917409639640546478852934477492, −15.939807187053406182297978827327, −14.90171292296075130289531328956, −14.25438458616154276606360923765, −13.66560941341118973654992445012, −12.61203546317272801485624021934, −11.95330714555306782379533821236, −10.608724985169121560657723736316, −9.94050926501760237414389100534, −8.91404027588460749380482729135, −8.0227437983278026209114162731, −7.323226184107394599188722060114, −6.49699492585795119391823017103, −5.14015768660608953191845669466, −3.92645658131525988397380198689, −3.34513546845489076342838796690, −1.93906179597532448041649873998, −1.06187134536562106210013781757,
1.58245879633643745886045194341, 2.42041813664042527841754523972, 3.55547282536182468811251642163, 4.402371177035344702472447572209, 5.46477970040943145226391651260, 6.59248386981995605198153385992, 7.65707868395384619335871624737, 8.62597537959503215301993553734, 9.20305527661276094856345386867, 9.92259192184355437461065173275, 11.31734929946912320679549608127, 11.81731226075914478568849163340, 13.01462764584449136750832572147, 14.06805016682520641442377757166, 14.40746688757498264634187925692, 15.47580004397535763731025518177, 16.03454446870892622541883554003, 17.05118468860295077528526639666, 18.13237086725818642391038489555, 18.935107468268763537688419778863, 19.60667244037059327838621014110, 20.38418608370430755108320178367, 21.45882938174666402536697810374, 21.7277697989182453352371506018, 22.601757715330085022445887990056