L(s) = 1 | + (0.923 + 0.382i)3-s + (0.382 + 0.923i)7-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s − i·13-s + (0.707 − 0.707i)19-s − i·21-s + (−0.923 + 0.382i)23-s + (0.382 + 0.923i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s + 33-s + (−0.923 − 0.382i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)3-s + (0.382 + 0.923i)7-s + (0.707 + 0.707i)9-s + (0.923 − 0.382i)11-s − i·13-s + (0.707 − 0.707i)19-s − i·21-s + (−0.923 + 0.382i)23-s + (0.382 + 0.923i)27-s + (0.382 − 0.923i)29-s + (−0.923 − 0.382i)31-s + 33-s + (−0.923 − 0.382i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.507 + 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.507 + 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.898812582 + 1.085159231i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.898812582 + 1.085159231i\) |
\(L(1)\) |
\(\approx\) |
\(1.504225021 + 0.4359191661i\) |
\(L(1)\) |
\(\approx\) |
\(1.504225021 + 0.4359191661i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.923 + 0.382i)T \) |
| 7 | \( 1 + (0.382 + 0.923i)T \) |
| 11 | \( 1 + (0.923 - 0.382i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (-0.923 + 0.382i)T \) |
| 29 | \( 1 + (0.382 - 0.923i)T \) |
| 31 | \( 1 + (-0.923 - 0.382i)T \) |
| 37 | \( 1 + (-0.923 - 0.382i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.707 - 0.707i)T \) |
| 59 | \( 1 + (-0.707 - 0.707i)T \) |
| 61 | \( 1 + (0.382 + 0.923i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.923 + 0.382i)T \) |
| 73 | \( 1 + (-0.382 + 0.923i)T \) |
| 79 | \( 1 + (-0.923 + 0.382i)T \) |
| 83 | \( 1 + (0.707 - 0.707i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.382 - 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.67938652403644107910657409010, −21.72158455462695794133550197750, −20.61294783975787240242792858734, −20.11437193103012544667045879395, −19.66477336791960724666403324524, −18.4180198220760929012260273189, −17.85770361831430253778915156564, −16.917409639640546478852934477492, −15.939807187053406182297978827327, −14.90171292296075130289531328956, −14.25438458616154276606360923765, −13.66560941341118973654992445012, −12.61203546317272801485624021934, −11.95330714555306782379533821236, −10.608724985169121560657723736316, −9.94050926501760237414389100534, −8.91404027588460749380482729135, −8.0227437983278026209114162731, −7.323226184107394599188722060114, −6.49699492585795119391823017103, −5.14015768660608953191845669466, −3.92645658131525988397380198689, −3.34513546845489076342838796690, −1.93906179597532448041649873998, −1.06187134536562106210013781757,
1.58245879633643745886045194341, 2.42041813664042527841754523972, 3.55547282536182468811251642163, 4.402371177035344702472447572209, 5.46477970040943145226391651260, 6.59248386981995605198153385992, 7.65707868395384619335871624737, 8.62597537959503215301993553734, 9.20305527661276094856345386867, 9.92259192184355437461065173275, 11.31734929946912320679549608127, 11.81731226075914478568849163340, 13.01462764584449136750832572147, 14.06805016682520641442377757166, 14.40746688757498264634187925692, 15.47580004397535763731025518177, 16.03454446870892622541883554003, 17.05118468860295077528526639666, 18.13237086725818642391038489555, 18.935107468268763537688419778863, 19.60667244037059327838621014110, 20.38418608370430755108320178367, 21.45882938174666402536697810374, 21.7277697989182453352371506018, 22.601757715330085022445887990056