L(s) = 1 | + (−0.988 − 0.151i)2-s + (0.978 − 0.207i)3-s + (0.953 + 0.299i)4-s + (0.969 − 0.244i)5-s + (−0.998 + 0.0570i)6-s + (−0.897 − 0.441i)8-s + (0.913 − 0.406i)9-s + (−0.995 + 0.0950i)10-s + (0.995 + 0.0950i)12-s + (0.198 − 0.980i)13-s + (0.897 − 0.441i)15-s + (0.820 + 0.572i)16-s + (−0.991 − 0.132i)17-s + (−0.964 + 0.263i)18-s + (−0.432 − 0.901i)19-s + (0.998 + 0.0570i)20-s + ⋯ |
L(s) = 1 | + (−0.988 − 0.151i)2-s + (0.978 − 0.207i)3-s + (0.953 + 0.299i)4-s + (0.969 − 0.244i)5-s + (−0.998 + 0.0570i)6-s + (−0.897 − 0.441i)8-s + (0.913 − 0.406i)9-s + (−0.995 + 0.0950i)10-s + (0.995 + 0.0950i)12-s + (0.198 − 0.980i)13-s + (0.897 − 0.441i)15-s + (0.820 + 0.572i)16-s + (−0.991 − 0.132i)17-s + (−0.964 + 0.263i)18-s + (−0.432 − 0.901i)19-s + (0.998 + 0.0570i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(0.193−0.981i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(0.193−0.981i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
0.193−0.981i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), 0.193−0.981i)
|
Particular Values
L(21) |
≈ |
1.190828875−0.9793761721i |
L(21) |
≈ |
1.190828875−0.9793761721i |
L(1) |
≈ |
1.067407335−0.3647650495i |
L(1) |
≈ |
1.067407335−0.3647650495i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.988−0.151i)T |
| 3 | 1+(0.978−0.207i)T |
| 5 | 1+(0.969−0.244i)T |
| 13 | 1+(0.198−0.980i)T |
| 17 | 1+(−0.991−0.132i)T |
| 19 | 1+(−0.432−0.901i)T |
| 23 | 1+(−0.327−0.945i)T |
| 29 | 1+(0.0285+0.999i)T |
| 31 | 1+(−0.861−0.508i)T |
| 37 | 1+(−0.595+0.803i)T |
| 41 | 1+(0.774−0.633i)T |
| 43 | 1+(0.142−0.989i)T |
| 47 | 1+(−0.964−0.263i)T |
| 53 | 1+(0.820−0.572i)T |
| 59 | 1+(−0.161+0.986i)T |
| 61 | 1+(−0.625−0.780i)T |
| 67 | 1+(0.0475−0.998i)T |
| 71 | 1+(0.941−0.336i)T |
| 73 | 1+(0.123+0.992i)T |
| 79 | 1+(0.532+0.846i)T |
| 83 | 1+(0.974+0.226i)T |
| 89 | 1+(−0.235+0.971i)T |
| 97 | 1+(−0.696+0.717i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.84181629859097714395810169211, −21.26120769163710827666871908064, −20.7076873428444388362492912383, −19.66728643350115596758670704533, −19.184093036649349951175710845281, −18.2570413871700900217996949491, −17.68887103583160677137494332320, −16.65541879907047796367100250179, −15.99303793538875455819661023546, −15.03077690523525046893682784434, −14.350141773341974479459111565870, −13.61140441213567484868945189670, −12.630172560079943569438917620838, −11.33408423722162353333619775315, −10.547111040275757499516471560956, −9.66525489225789555034287231283, −9.20663804682482488347556483940, −8.39305281798626206268819617613, −7.439178462226565367289450714091, −6.58353823864500320366910212504, −5.755363310792756418073046416610, −4.33068579240556610238737283262, −3.147494807575765386609164910921, −2.0365129864829458897700431919, −1.64394854759553557129052709504,
0.814357443288016097728088666390, 2.032438522941969613570390218686, 2.54907883977394656503226506557, 3.65472375622603460947394771023, 5.077555606355147927863254514218, 6.37375493727098837197956943437, 7.00012667834295810170867857278, 8.110166152168899435840269416945, 8.81918693221625210790674473597, 9.33723272246257654099756145225, 10.331873573791707056200085205667, 10.894519619638446702287546679838, 12.3573937720098116511239857682, 12.97628783743796031345010921959, 13.75495794123595043154388942299, 14.84391498220029340462774136714, 15.50084060604929620500846829939, 16.43295612871967923877141867481, 17.39419234255681945613221524754, 18.07965462822082984575869449921, 18.57244033754836414771550540786, 19.759036951341801553381044706246, 20.154469218478841077620720727185, 20.85800149939534184702082225537, 21.6271691255549862974833586278