Properties

Label 847.101
Modulus 847847
Conductor 847847
Order 330330
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(330))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,63]))
 
pari: [g,chi] = znchar(Mod(101,847))
 

Basic properties

Modulus: 847847
Conductor: 847847
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 330330
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 847.be

χ847(17,)\chi_{847}(17,\cdot) χ847(19,)\chi_{847}(19,\cdot) χ847(24,)\chi_{847}(24,\cdot) χ847(52,)\chi_{847}(52,\cdot) χ847(61,)\chi_{847}(61,\cdot) χ847(68,)\chi_{847}(68,\cdot) χ847(73,)\chi_{847}(73,\cdot) χ847(96,)\chi_{847}(96,\cdot) χ847(101,)\chi_{847}(101,\cdot) χ847(117,)\chi_{847}(117,\cdot) χ847(129,)\chi_{847}(129,\cdot) χ847(138,)\chi_{847}(138,\cdot) χ847(145,)\chi_{847}(145,\cdot) χ847(150,)\chi_{847}(150,\cdot) χ847(171,)\chi_{847}(171,\cdot) χ847(173,)\chi_{847}(173,\cdot) χ847(178,)\chi_{847}(178,\cdot) χ847(194,)\chi_{847}(194,\cdot) χ847(206,)\chi_{847}(206,\cdot) χ847(222,)\chi_{847}(222,\cdot) χ847(227,)\chi_{847}(227,\cdot) χ847(248,)\chi_{847}(248,\cdot) χ847(250,)\chi_{847}(250,\cdot) χ847(255,)\chi_{847}(255,\cdot) χ847(271,)\chi_{847}(271,\cdot) χ847(283,)\chi_{847}(283,\cdot) χ847(292,)\chi_{847}(292,\cdot) χ847(299,)\chi_{847}(299,\cdot) χ847(304,)\chi_{847}(304,\cdot) χ847(325,)\chi_{847}(325,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ165)\Q(\zeta_{165})
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

(122,365)(122,365)(e(16),e(21110))(e\left(\frac{1}{6}\right),e\left(\frac{21}{110}\right))

First values

aa 1-11122334455668899101012121313
χ847(101,a) \chi_{ 847 }(101, a) 1111e(173330)e\left(\frac{173}{330}\right)e(2930)e\left(\frac{29}{30}\right)e(8165)e\left(\frac{8}{165}\right)e(317330)e\left(\frac{317}{330}\right)e(2755)e\left(\frac{27}{55}\right)e(63110)e\left(\frac{63}{110}\right)e(1415)e\left(\frac{14}{15}\right)e(1633)e\left(\frac{16}{33}\right)e(166)e\left(\frac{1}{66}\right)e(4355)e\left(\frac{43}{55}\right)
sage: chi.jacobi_sum(n)
 
χ847(101,a)   \chi_{ 847 }(101,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ847(101,))   \tau_{ a }( \chi_{ 847 }(101,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ847(101,),χ847(n,))   J(\chi_{ 847 }(101,·),\chi_{ 847 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ847(101,))  K(a,b,\chi_{ 847 }(101,·)) \; at   a,b=\; a,b = e.g. 1,2