from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([55,303]))
pari: [g,chi] = znchar(Mod(255,847))
χ847(17,⋅)
χ847(19,⋅)
χ847(24,⋅)
χ847(52,⋅)
χ847(61,⋅)
χ847(68,⋅)
χ847(73,⋅)
χ847(96,⋅)
χ847(101,⋅)
χ847(117,⋅)
χ847(129,⋅)
χ847(138,⋅)
χ847(145,⋅)
χ847(150,⋅)
χ847(171,⋅)
χ847(173,⋅)
χ847(178,⋅)
χ847(194,⋅)
χ847(206,⋅)
χ847(222,⋅)
χ847(227,⋅)
χ847(248,⋅)
χ847(250,⋅)
χ847(255,⋅)
χ847(271,⋅)
χ847(283,⋅)
χ847(292,⋅)
χ847(299,⋅)
χ847(304,⋅)
χ847(325,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(122,365) → (e(61),e(110101))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ847(255,a) |
1 | 1 | e(33083) | e(3029) | e(16583) | e(330257) | e(5512) | e(11083) | e(1514) | e(331) | e(6631) | e(5513) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)