from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([275,9]))
pari: [g,chi] = znchar(Mod(250,847))
χ847(17,⋅)
χ847(19,⋅)
χ847(24,⋅)
χ847(52,⋅)
χ847(61,⋅)
χ847(68,⋅)
χ847(73,⋅)
χ847(96,⋅)
χ847(101,⋅)
χ847(117,⋅)
χ847(129,⋅)
χ847(138,⋅)
χ847(145,⋅)
χ847(150,⋅)
χ847(171,⋅)
χ847(173,⋅)
χ847(178,⋅)
χ847(194,⋅)
χ847(206,⋅)
χ847(222,⋅)
χ847(227,⋅)
χ847(248,⋅)
χ847(250,⋅)
χ847(255,⋅)
χ847(271,⋅)
χ847(283,⋅)
χ847(292,⋅)
χ847(299,⋅)
χ847(304,⋅)
χ847(325,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(122,365) → (e(65),e(1103))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ847(250,a) |
1 | 1 | e(330229) | e(307) | e(16564) | e(33061) | e(5551) | e(1109) | e(157) | e(3329) | e(6641) | e(5514) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)