Properties

Label 1-85-85.22-r0-0-0
Degree 11
Conductor 8585
Sign 0.9220.386i0.922 - 0.386i
Analytic cond. 0.3947380.394738
Root an. cond. 0.3947380.394738
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + (0.923 + 0.382i)3-s + i·4-s + (−0.382 − 0.923i)6-s + (−0.382 − 0.923i)7-s + (0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.382 + 0.923i)11-s + (−0.382 + 0.923i)12-s + 13-s + (−0.382 + 0.923i)14-s − 16-s i·18-s + (0.707 − 0.707i)19-s i·21-s + (0.382 − 0.923i)22-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)2-s + (0.923 + 0.382i)3-s + i·4-s + (−0.382 − 0.923i)6-s + (−0.382 − 0.923i)7-s + (0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.382 + 0.923i)11-s + (−0.382 + 0.923i)12-s + 13-s + (−0.382 + 0.923i)14-s − 16-s i·18-s + (0.707 − 0.707i)19-s i·21-s + (0.382 − 0.923i)22-s + ⋯

Functional equation

Λ(s)=(85s/2ΓR(s)L(s)=((0.9220.386i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(85s/2ΓR(s)L(s)=((0.9220.386i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 8585    =    5175 \cdot 17
Sign: 0.9220.386i0.922 - 0.386i
Analytic conductor: 0.3947380.394738
Root analytic conductor: 0.3947380.394738
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ85(22,)\chi_{85} (22, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 85, (0: ), 0.9220.386i)(1,\ 85,\ (0:\ ),\ 0.922 - 0.386i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.91534402860.1838165876i0.9153440286 - 0.1838165876i
L(12)L(\frac12) \approx 0.91534402860.1838165876i0.9153440286 - 0.1838165876i
L(1)L(1) \approx 0.96297292310.1667101039i0.9629729231 - 0.1667101039i
L(1)L(1) \approx 0.96297292310.1667101039i0.9629729231 - 0.1667101039i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1 1
good2 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
3 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
7 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
11 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
13 1+T 1 + T
19 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
23 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
29 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
31 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
37 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
41 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
43 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
47 1T 1 - T
53 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
59 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
61 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
67 1iT 1 - iT
71 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
73 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
79 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
83 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
89 1+iT 1 + iT
97 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−31.02270612493989696073537259282, −29.659874032527615353840679648497, −28.57629545318949943937993959361, −27.43145103862959100583319081446, −26.36871693050308580090879617432, −25.51365523857429334595703506864, −24.71666896192574438406384021808, −23.87218516935757756989925194731, −22.39164009731681268498756881142, −20.88136723636168541699612804860, −19.688716625135326199027415533566, −18.72073543975814796777023019145, −18.15649067663381311789609013316, −16.40398747024723385515677199199, −15.56861997693161397342861815166, −14.40105141544392212802098517723, −13.459502349675083138737016394737, −11.834609752335949660615392483294, −10.11731908490325898745576309317, −8.85468922881508184730955885268, −8.30570068255287426157807671635, −6.76917640314439923140342171327, −5.69419081218228498788741865719, −3.42053129634810597613967514474, −1.63821709722534523897851063561, 1.691482926362417444885704236761, 3.33643157289803732815401311268, 4.291399181366467096049173106058, 7.0084981767532850879113275372, 8.072908086531523831979301224615, 9.40633484419589703967285901171, 10.1143483925876720813396415097, 11.405703658796288540761325182, 13.0225402860067333200088001937, 13.83834688551077615783614421403, 15.48508552928735558890126003430, 16.55188619366019991226596211392, 17.802871817731663455393288912631, 19.03347652624144040646956144635, 20.14809787698167031356364142734, 20.48507812825529800837355366159, 21.8168896187675971020326870154, 22.94879109904264248986169386884, 24.69443015540158179839122647923, 26.072198900305498811638704289346, 26.17013534316152355455189828806, 27.589299056977549218198934356702, 28.33808722609564366757171051358, 29.87211484345893164568997686294, 30.46086225467897291674456773004

Graph of the ZZ-function along the critical line