L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.923 − 0.382i)3-s − i·4-s + (−0.382 + 0.923i)6-s + (−0.382 + 0.923i)7-s + (0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (0.382 − 0.923i)11-s + (−0.382 − 0.923i)12-s + 13-s + (−0.382 − 0.923i)14-s − 16-s + i·18-s + (0.707 + 0.707i)19-s + i·21-s + (0.382 + 0.923i)22-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.923 − 0.382i)3-s − i·4-s + (−0.382 + 0.923i)6-s + (−0.382 + 0.923i)7-s + (0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (0.382 − 0.923i)11-s + (−0.382 − 0.923i)12-s + 13-s + (−0.382 − 0.923i)14-s − 16-s + i·18-s + (0.707 + 0.707i)19-s + i·21-s + (0.382 + 0.923i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9153440286 + 0.1838165876i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9153440286 + 0.1838165876i\) |
\(L(1)\) |
\(\approx\) |
\(0.9629729231 + 0.1667101039i\) |
\(L(1)\) |
\(\approx\) |
\(0.9629729231 + 0.1667101039i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.923 - 0.382i)T \) |
| 7 | \( 1 + (-0.382 + 0.923i)T \) |
| 11 | \( 1 + (0.382 - 0.923i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 + (0.707 + 0.707i)T \) |
| 23 | \( 1 + (-0.923 - 0.382i)T \) |
| 29 | \( 1 + (-0.923 + 0.382i)T \) |
| 31 | \( 1 + (0.382 + 0.923i)T \) |
| 37 | \( 1 + (-0.923 + 0.382i)T \) |
| 41 | \( 1 + (-0.923 - 0.382i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.707 - 0.707i)T \) |
| 59 | \( 1 + (-0.707 + 0.707i)T \) |
| 61 | \( 1 + (0.923 + 0.382i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (-0.382 - 0.923i)T \) |
| 73 | \( 1 + (-0.382 - 0.923i)T \) |
| 79 | \( 1 + (-0.382 + 0.923i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.382 - 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.46086225467897291674456773004, −29.87211484345893164568997686294, −28.33808722609564366757171051358, −27.589299056977549218198934356702, −26.17013534316152355455189828806, −26.072198900305498811638704289346, −24.69443015540158179839122647923, −22.94879109904264248986169386884, −21.8168896187675971020326870154, −20.48507812825529800837355366159, −20.14809787698167031356364142734, −19.03347652624144040646956144635, −17.802871817731663455393288912631, −16.55188619366019991226596211392, −15.48508552928735558890126003430, −13.83834688551077615783614421403, −13.0225402860067333200088001937, −11.405703658796288540761325182, −10.1143483925876720813396415097, −9.40633484419589703967285901171, −8.072908086531523831979301224615, −7.0084981767532850879113275372, −4.291399181366467096049173106058, −3.33643157289803732815401311268, −1.691482926362417444885704236761,
1.63821709722534523897851063561, 3.42053129634810597613967514474, 5.69419081218228498788741865719, 6.76917640314439923140342171327, 8.30570068255287426157807671635, 8.85468922881508184730955885268, 10.11731908490325898745576309317, 11.834609752335949660615392483294, 13.459502349675083138737016394737, 14.40105141544392212802098517723, 15.56861997693161397342861815166, 16.40398747024723385515677199199, 18.15649067663381311789609013316, 18.72073543975814796777023019145, 19.688716625135326199027415533566, 20.88136723636168541699612804860, 22.39164009731681268498756881142, 23.87218516935757756989925194731, 24.71666896192574438406384021808, 25.51365523857429334595703506864, 26.36871693050308580090879617432, 27.43145103862959100583319081446, 28.57629545318949943937993959361, 29.659874032527615353840679648497, 31.02270612493989696073537259282