L(s) = 1 | + (0.755 + 0.654i)3-s + (−0.909 + 0.415i)7-s + (0.142 + 0.989i)9-s + (0.959 − 0.281i)11-s + (0.909 + 0.415i)13-s + (−0.540 − 0.841i)17-s + (0.841 + 0.540i)19-s + (−0.959 − 0.281i)21-s + (−0.540 + 0.841i)27-s + (0.841 − 0.540i)29-s + (0.654 + 0.755i)31-s + (0.909 + 0.415i)33-s + (0.989 − 0.142i)37-s + (0.415 + 0.909i)39-s + (−0.142 + 0.989i)41-s + ⋯ |
L(s) = 1 | + (0.755 + 0.654i)3-s + (−0.909 + 0.415i)7-s + (0.142 + 0.989i)9-s + (0.959 − 0.281i)11-s + (0.909 + 0.415i)13-s + (−0.540 − 0.841i)17-s + (0.841 + 0.540i)19-s + (−0.959 − 0.281i)21-s + (−0.540 + 0.841i)27-s + (0.841 − 0.540i)29-s + (0.654 + 0.755i)31-s + (0.909 + 0.415i)33-s + (0.989 − 0.142i)37-s + (0.415 + 0.909i)39-s + (−0.142 + 0.989i)41-s + ⋯ |
Λ(s)=(=(920s/2ΓR(s+1)L(s)(0.0313+0.999i)Λ(1−s)
Λ(s)=(=(920s/2ΓR(s+1)L(s)(0.0313+0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
920
= 23⋅5⋅23
|
Sign: |
0.0313+0.999i
|
Analytic conductor: |
98.8677 |
Root analytic conductor: |
98.8677 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ920(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 920, (1: ), 0.0313+0.999i)
|
Particular Values
L(21) |
≈ |
2.093995356+2.029397297i |
L(21) |
≈ |
2.093995356+2.029397297i |
L(1) |
≈ |
1.357717667+0.5028637672i |
L(1) |
≈ |
1.357717667+0.5028637672i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1 |
good | 3 | 1+(0.755+0.654i)T |
| 7 | 1+(−0.909+0.415i)T |
| 11 | 1+(0.959−0.281i)T |
| 13 | 1+(0.909+0.415i)T |
| 17 | 1+(−0.540−0.841i)T |
| 19 | 1+(0.841+0.540i)T |
| 29 | 1+(0.841−0.540i)T |
| 31 | 1+(0.654+0.755i)T |
| 37 | 1+(0.989−0.142i)T |
| 41 | 1+(−0.142+0.989i)T |
| 43 | 1+(−0.755−0.654i)T |
| 47 | 1−iT |
| 53 | 1+(0.909−0.415i)T |
| 59 | 1+(−0.415+0.909i)T |
| 61 | 1+(−0.654−0.755i)T |
| 67 | 1+(−0.281+0.959i)T |
| 71 | 1+(0.959+0.281i)T |
| 73 | 1+(0.540−0.841i)T |
| 79 | 1+(−0.415+0.909i)T |
| 83 | 1+(0.989−0.142i)T |
| 89 | 1+(−0.654+0.755i)T |
| 97 | 1+(0.989+0.142i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.45057851528419322288938845929, −20.3521668021012937862952648084, −19.89947737828667643374649788290, −19.3180773190309393734714956301, −18.39909798283560852173840080633, −17.65340627284148264323130088994, −16.81529974124969426153469392103, −15.75220745170378809404997610150, −15.13645285846107461955475737774, −14.09010716952321929106893202528, −13.48344746574719293896433416393, −12.807469897385590399870052766630, −12.00639152673566492076527259272, −10.96850965142987374202634593866, −9.88321899844453103303164236563, −9.1744466969908714382763370219, −8.38471894456292145323235299818, −7.4277189759584121905189682230, −6.555081311467504790502670830122, −6.063112486181543370886550524302, −4.38614691319051123095991494009, −3.55605258291755973994161162912, −2.78789005474389216791802265384, −1.50496391499767367395347888424, −0.658104630126861162464807099385,
1.047973836668059111356767274270, 2.379350848841834541652249881331, 3.29507224028135076756340807014, 3.96044637948241411632597462302, 5.02642719419800271336439686303, 6.16728835739279493956019091174, 6.91568379735068057944924254936, 8.17558072675852407384439835899, 8.92747920434152353864744314957, 9.5293289354001327012901531407, 10.281285863597164830506678749481, 11.420648097359849887698833390362, 12.093483296131584092015233985842, 13.45103495840199932018873505092, 13.745439329403526780815615608963, 14.73146284284273674793716154956, 15.62221148944790197278290452327, 16.19567497812788635025777869862, 16.78712289678490094396650275151, 18.16413241821439338040898620489, 18.80191706879992331639526760923, 19.75668650694500785700659659259, 20.09874581432712513638363638397, 21.2114816970778637519584100958, 21.7457521856781083012027316562