L(s) = 1 | + (0.755 + 0.654i)3-s + (−0.909 + 0.415i)7-s + (0.142 + 0.989i)9-s + (0.959 − 0.281i)11-s + (0.909 + 0.415i)13-s + (−0.540 − 0.841i)17-s + (0.841 + 0.540i)19-s + (−0.959 − 0.281i)21-s + (−0.540 + 0.841i)27-s + (0.841 − 0.540i)29-s + (0.654 + 0.755i)31-s + (0.909 + 0.415i)33-s + (0.989 − 0.142i)37-s + (0.415 + 0.909i)39-s + (−0.142 + 0.989i)41-s + ⋯ |
L(s) = 1 | + (0.755 + 0.654i)3-s + (−0.909 + 0.415i)7-s + (0.142 + 0.989i)9-s + (0.959 − 0.281i)11-s + (0.909 + 0.415i)13-s + (−0.540 − 0.841i)17-s + (0.841 + 0.540i)19-s + (−0.959 − 0.281i)21-s + (−0.540 + 0.841i)27-s + (0.841 − 0.540i)29-s + (0.654 + 0.755i)31-s + (0.909 + 0.415i)33-s + (0.989 − 0.142i)37-s + (0.415 + 0.909i)39-s + (−0.142 + 0.989i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0313 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0313 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.093995356 + 2.029397297i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.093995356 + 2.029397297i\) |
\(L(1)\) |
\(\approx\) |
\(1.357717667 + 0.5028637672i\) |
\(L(1)\) |
\(\approx\) |
\(1.357717667 + 0.5028637672i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (0.755 + 0.654i)T \) |
| 7 | \( 1 + (-0.909 + 0.415i)T \) |
| 11 | \( 1 + (0.959 - 0.281i)T \) |
| 13 | \( 1 + (0.909 + 0.415i)T \) |
| 17 | \( 1 + (-0.540 - 0.841i)T \) |
| 19 | \( 1 + (0.841 + 0.540i)T \) |
| 29 | \( 1 + (0.841 - 0.540i)T \) |
| 31 | \( 1 + (0.654 + 0.755i)T \) |
| 37 | \( 1 + (0.989 - 0.142i)T \) |
| 41 | \( 1 + (-0.142 + 0.989i)T \) |
| 43 | \( 1 + (-0.755 - 0.654i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.909 - 0.415i)T \) |
| 59 | \( 1 + (-0.415 + 0.909i)T \) |
| 61 | \( 1 + (-0.654 - 0.755i)T \) |
| 67 | \( 1 + (-0.281 + 0.959i)T \) |
| 71 | \( 1 + (0.959 + 0.281i)T \) |
| 73 | \( 1 + (0.540 - 0.841i)T \) |
| 79 | \( 1 + (-0.415 + 0.909i)T \) |
| 83 | \( 1 + (0.989 - 0.142i)T \) |
| 89 | \( 1 + (-0.654 + 0.755i)T \) |
| 97 | \( 1 + (0.989 + 0.142i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.45057851528419322288938845929, −20.3521668021012937862952648084, −19.89947737828667643374649788290, −19.3180773190309393734714956301, −18.39909798283560852173840080633, −17.65340627284148264323130088994, −16.81529974124969426153469392103, −15.75220745170378809404997610150, −15.13645285846107461955475737774, −14.09010716952321929106893202528, −13.48344746574719293896433416393, −12.807469897385590399870052766630, −12.00639152673566492076527259272, −10.96850965142987374202634593866, −9.88321899844453103303164236563, −9.1744466969908714382763370219, −8.38471894456292145323235299818, −7.4277189759584121905189682230, −6.555081311467504790502670830122, −6.063112486181543370886550524302, −4.38614691319051123095991494009, −3.55605258291755973994161162912, −2.78789005474389216791802265384, −1.50496391499767367395347888424, −0.658104630126861162464807099385,
1.047973836668059111356767274270, 2.379350848841834541652249881331, 3.29507224028135076756340807014, 3.96044637948241411632597462302, 5.02642719419800271336439686303, 6.16728835739279493956019091174, 6.91568379735068057944924254936, 8.17558072675852407384439835899, 8.92747920434152353864744314957, 9.5293289354001327012901531407, 10.281285863597164830506678749481, 11.420648097359849887698833390362, 12.093483296131584092015233985842, 13.45103495840199932018873505092, 13.745439329403526780815615608963, 14.73146284284273674793716154956, 15.62221148944790197278290452327, 16.19567497812788635025777869862, 16.78712289678490094396650275151, 18.16413241821439338040898620489, 18.80191706879992331639526760923, 19.75668650694500785700659659259, 20.09874581432712513638363638397, 21.2114816970778637519584100958, 21.7457521856781083012027316562