L(s) = 1 | + (0.929 + 0.368i)2-s + (0.924 + 0.380i)3-s + (0.728 + 0.684i)4-s + (−0.906 + 0.422i)5-s + (0.719 + 0.694i)6-s + (0.602 − 0.797i)7-s + (0.425 + 0.905i)8-s + (0.710 + 0.703i)9-s + (−0.998 + 0.0585i)10-s + (−0.844 + 0.536i)11-s + (0.413 + 0.910i)12-s + (−0.0422 + 0.999i)13-s + (0.854 − 0.519i)14-s + (−0.998 + 0.0455i)15-s + (0.0617 + 0.998i)16-s + (−0.967 + 0.250i)17-s + ⋯ |
L(s) = 1 | + (0.929 + 0.368i)2-s + (0.924 + 0.380i)3-s + (0.728 + 0.684i)4-s + (−0.906 + 0.422i)5-s + (0.719 + 0.694i)6-s + (0.602 − 0.797i)7-s + (0.425 + 0.905i)8-s + (0.710 + 0.703i)9-s + (−0.998 + 0.0585i)10-s + (−0.844 + 0.536i)11-s + (0.413 + 0.910i)12-s + (−0.0422 + 0.999i)13-s + (0.854 − 0.519i)14-s + (−0.998 + 0.0455i)15-s + (0.0617 + 0.998i)16-s + (−0.967 + 0.250i)17-s + ⋯ |
Λ(s)=(=(967s/2ΓR(s)L(s)(−0.476+0.878i)Λ(1−s)
Λ(s)=(=(967s/2ΓR(s)L(s)(−0.476+0.878i)Λ(1−s)
Degree: |
1 |
Conductor: |
967
|
Sign: |
−0.476+0.878i
|
Analytic conductor: |
4.49072 |
Root analytic conductor: |
4.49072 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ967(138,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 967, (0: ), −0.476+0.878i)
|
Particular Values
L(21) |
≈ |
1.564071614+2.628281433i |
L(21) |
≈ |
1.564071614+2.628281433i |
L(1) |
≈ |
1.762353718+1.136941652i |
L(1) |
≈ |
1.762353718+1.136941652i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 967 | 1 |
good | 2 | 1+(0.929+0.368i)T |
| 3 | 1+(0.924+0.380i)T |
| 5 | 1+(−0.906+0.422i)T |
| 7 | 1+(0.602−0.797i)T |
| 11 | 1+(−0.844+0.536i)T |
| 13 | 1+(−0.0422+0.999i)T |
| 17 | 1+(−0.967+0.250i)T |
| 19 | 1+(−0.971−0.238i)T |
| 23 | 1+(0.987+0.155i)T |
| 29 | 1+(0.993+0.116i)T |
| 31 | 1+(−0.927−0.374i)T |
| 37 | 1+(0.754+0.655i)T |
| 41 | 1+(0.203+0.979i)T |
| 43 | 1+(−0.941+0.337i)T |
| 47 | 1+(−0.658−0.752i)T |
| 53 | 1+(0.898+0.439i)T |
| 59 | 1+(0.216−0.976i)T |
| 61 | 1+(0.746−0.665i)T |
| 67 | 1+(0.787+0.615i)T |
| 71 | 1+(−0.145+0.989i)T |
| 73 | 1+(0.898−0.439i)T |
| 79 | 1+(−0.618+0.785i)T |
| 83 | 1+(0.516−0.856i)T |
| 89 | 1+(0.139−0.990i)T |
| 97 | 1+(−0.900−0.433i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.16361103347928617267800853900, −20.89257086000358661890261778832, −19.92924809530858938689407656152, −19.43036412426259883418920541809, −18.6282413916554955349095348830, −17.87882888071924561491625241608, −16.34304294859541331985335855180, −15.48048885727970141505681297287, −15.15534174889607857518199599030, −14.405028668537575057816582875329, −13.27360822805900746197243052428, −12.82522008626091840737071713896, −12.139201751445263954360991211056, −11.16269317833956275008263410332, −10.485296142854138054709235665483, −9.06191713407473154753659016886, −8.385201145321614348219596427959, −7.6469592819044489007472340535, −6.65954334590695258915357322872, −5.460916052870420149496300304173, −4.71695908231319170913316181232, −3.73835148911375792597218909653, −2.82437937405419666386574064795, −2.162209225378881242044622906262, −0.82405766172420529360157798547,
1.87163963568221695310945101010, 2.72309367006428074107476996830, 3.736992546563818351900749489008, 4.48314184806245921767537150811, 4.85659572180958991255448139485, 6.719372836103315645742002694140, 7.11694122021556848014430487371, 8.07342135650547030066544395691, 8.579499441847178137797575248148, 10.0374777435224996244102372314, 11.00215037015023213901478389975, 11.41323381355860146965007982117, 12.80321531397446092705369221311, 13.30525507466298416928425992586, 14.26239765434697256465149764795, 14.90226527462097083884903527745, 15.33587077949298566003903564591, 16.22348645716461276710614569583, 16.94938727692901578807917584498, 18.10039750953505356612528264126, 19.14461082900015013853608183520, 20.00425686798077672095486320201, 20.37220147153394871050267580, 21.44594633868727455448075930561, 21.723545443617157052648593828361