Properties

Label 1-967-967.960-r0-0-0
Degree 11
Conductor 967967
Sign 0.4760.878i-0.476 - 0.878i
Analytic cond. 4.490724.49072
Root an. cond. 4.490724.49072
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.929 − 0.368i)2-s + (0.924 − 0.380i)3-s + (0.728 − 0.684i)4-s + (−0.906 − 0.422i)5-s + (0.719 − 0.694i)6-s + (0.602 + 0.797i)7-s + (0.425 − 0.905i)8-s + (0.710 − 0.703i)9-s + (−0.998 − 0.0585i)10-s + (−0.844 − 0.536i)11-s + (0.413 − 0.910i)12-s + (−0.0422 − 0.999i)13-s + (0.854 + 0.519i)14-s + (−0.998 − 0.0455i)15-s + (0.0617 − 0.998i)16-s + (−0.967 − 0.250i)17-s + ⋯
L(s)  = 1  + (0.929 − 0.368i)2-s + (0.924 − 0.380i)3-s + (0.728 − 0.684i)4-s + (−0.906 − 0.422i)5-s + (0.719 − 0.694i)6-s + (0.602 + 0.797i)7-s + (0.425 − 0.905i)8-s + (0.710 − 0.703i)9-s + (−0.998 − 0.0585i)10-s + (−0.844 − 0.536i)11-s + (0.413 − 0.910i)12-s + (−0.0422 − 0.999i)13-s + (0.854 + 0.519i)14-s + (−0.998 − 0.0455i)15-s + (0.0617 − 0.998i)16-s + (−0.967 − 0.250i)17-s + ⋯

Functional equation

Λ(s)=(967s/2ΓR(s)L(s)=((0.4760.878i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.476 - 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(967s/2ΓR(s)L(s)=((0.4760.878i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 967 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.476 - 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 967967
Sign: 0.4760.878i-0.476 - 0.878i
Analytic conductor: 4.490724.49072
Root analytic conductor: 4.490724.49072
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ967(960,)\chi_{967} (960, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 967, (0: ), 0.4760.878i)(1,\ 967,\ (0:\ ),\ -0.476 - 0.878i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.5640716142.628281433i1.564071614 - 2.628281433i
L(12)L(\frac12) \approx 1.5640716142.628281433i1.564071614 - 2.628281433i
L(1)L(1) \approx 1.7623537181.136941652i1.762353718 - 1.136941652i
L(1)L(1) \approx 1.7623537181.136941652i1.762353718 - 1.136941652i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad967 1 1
good2 1+(0.9290.368i)T 1 + (0.929 - 0.368i)T
3 1+(0.9240.380i)T 1 + (0.924 - 0.380i)T
5 1+(0.9060.422i)T 1 + (-0.906 - 0.422i)T
7 1+(0.602+0.797i)T 1 + (0.602 + 0.797i)T
11 1+(0.8440.536i)T 1 + (-0.844 - 0.536i)T
13 1+(0.04220.999i)T 1 + (-0.0422 - 0.999i)T
17 1+(0.9670.250i)T 1 + (-0.967 - 0.250i)T
19 1+(0.971+0.238i)T 1 + (-0.971 + 0.238i)T
23 1+(0.9870.155i)T 1 + (0.987 - 0.155i)T
29 1+(0.9930.116i)T 1 + (0.993 - 0.116i)T
31 1+(0.927+0.374i)T 1 + (-0.927 + 0.374i)T
37 1+(0.7540.655i)T 1 + (0.754 - 0.655i)T
41 1+(0.2030.979i)T 1 + (0.203 - 0.979i)T
43 1+(0.9410.337i)T 1 + (-0.941 - 0.337i)T
47 1+(0.658+0.752i)T 1 + (-0.658 + 0.752i)T
53 1+(0.8980.439i)T 1 + (0.898 - 0.439i)T
59 1+(0.216+0.976i)T 1 + (0.216 + 0.976i)T
61 1+(0.746+0.665i)T 1 + (0.746 + 0.665i)T
67 1+(0.7870.615i)T 1 + (0.787 - 0.615i)T
71 1+(0.1450.989i)T 1 + (-0.145 - 0.989i)T
73 1+(0.898+0.439i)T 1 + (0.898 + 0.439i)T
79 1+(0.6180.785i)T 1 + (-0.618 - 0.785i)T
83 1+(0.516+0.856i)T 1 + (0.516 + 0.856i)T
89 1+(0.139+0.990i)T 1 + (0.139 + 0.990i)T
97 1+(0.900+0.433i)T 1 + (-0.900 + 0.433i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.723545443617157052648593828361, −21.44594633868727455448075930561, −20.37220147153394871050267580, −20.00425686798077672095486320201, −19.14461082900015013853608183520, −18.10039750953505356612528264126, −16.94938727692901578807917584498, −16.22348645716461276710614569583, −15.33587077949298566003903564591, −14.90226527462097083884903527745, −14.26239765434697256465149764795, −13.30525507466298416928425992586, −12.80321531397446092705369221311, −11.41323381355860146965007982117, −11.00215037015023213901478389975, −10.0374777435224996244102372314, −8.579499441847178137797575248148, −8.07342135650547030066544395691, −7.11694122021556848014430487371, −6.719372836103315645742002694140, −4.85659572180958991255448139485, −4.48314184806245921767537150811, −3.736992546563818351900749489008, −2.72309367006428074107476996830, −1.87163963568221695310945101010, 0.82405766172420529360157798547, 2.162209225378881242044622906262, 2.82437937405419666386574064795, 3.73835148911375792597218909653, 4.71695908231319170913316181232, 5.460916052870420149496300304173, 6.65954334590695258915357322872, 7.6469592819044489007472340535, 8.385201145321614348219596427959, 9.06191713407473154753659016886, 10.485296142854138054709235665483, 11.16269317833956275008263410332, 12.139201751445263954360991211056, 12.82522008626091840737071713896, 13.27360822805900746197243052428, 14.405028668537575057816582875329, 15.15534174889607857518199599030, 15.48048885727970141505681297287, 16.34304294859541331985335855180, 17.87882888071924561491625241608, 18.6282413916554955349095348830, 19.43036412426259883418920541809, 19.92924809530858938689407656152, 20.89257086000358661890261778832, 21.16361103347928617267800853900

Graph of the ZZ-function along the critical line