L(s) = 1 | − 2-s + 5·9-s − 13-s − 5·18-s − 23-s + 5·25-s + 26-s − 41-s + 46-s + 5·49-s − 5·50-s − 61-s − 67-s − 79-s + 15·81-s + 82-s − 83-s − 89-s − 5·98-s − 103-s − 109-s − 113-s − 5·117-s + 5·121-s + 122-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 2-s + 5·9-s − 13-s − 5·18-s − 23-s + 5·25-s + 26-s − 41-s + 46-s + 5·49-s − 5·50-s − 61-s − 67-s − 79-s + 15·81-s + 82-s − 83-s − 89-s − 5·98-s − 103-s − 109-s − 113-s − 5·117-s + 5·121-s + 122-s + 127-s + 131-s + ⋯ |
Λ(s)=(=((13035)s/2ΓC(s)5L(s)Λ(1−s)
Λ(s)=(=((13035)s/2ΓC(s)5L(s)Λ(1−s)
Degree: |
10 |
Conductor: |
13035
|
Sign: |
1
|
Analytic conductor: |
0.116280 |
Root analytic conductor: |
0.806400 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ1303(1302,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(10, 13035, ( :0,0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.9750123453 |
L(21) |
≈ |
0.9750123453 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 1303 | C1 | (1−T)5 |
good | 2 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 3 | C1×C1 | (1−T)5(1+T)5 |
| 5 | C1×C1 | (1−T)5(1+T)5 |
| 7 | C1×C1 | (1−T)5(1+T)5 |
| 11 | C1×C1 | (1−T)5(1+T)5 |
| 13 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 17 | C1×C1 | (1−T)5(1+T)5 |
| 19 | C1×C1 | (1−T)5(1+T)5 |
| 23 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 29 | C1×C1 | (1−T)5(1+T)5 |
| 31 | C1×C1 | (1−T)5(1+T)5 |
| 37 | C1×C1 | (1−T)5(1+T)5 |
| 41 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 43 | C1×C1 | (1−T)5(1+T)5 |
| 47 | C1×C1 | (1−T)5(1+T)5 |
| 53 | C1×C1 | (1−T)5(1+T)5 |
| 59 | C1×C1 | (1−T)5(1+T)5 |
| 61 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 67 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 71 | C1×C1 | (1−T)5(1+T)5 |
| 73 | C1×C1 | (1−T)5(1+T)5 |
| 79 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 83 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 89 | C10 | 1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10 |
| 97 | C1×C1 | (1−T)5(1+T)5 |
show more | | |
show less | | |
L(s)=p∏ j=1∏10(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.15906246070400453764973182937, −5.95610174947768459102177880246, −5.59781757676187892478949981359, −5.38764584205613917884399296923, −5.38701991796606133332280685529, −4.86799811902599925316447841510, −4.77573403747939430720728191678, −4.68728365651808918880788767128, −4.61905077612086876373932789728, −4.60827826990408734939009745928, −4.04644317575707131527640531549, −3.95552809636614571698924215850, −3.91722517471613998744552799378, −3.81750756496842638922539402069, −3.33890072597395085145558201184, −3.06814001176919337519022237188, −2.89525105345502872843806324297, −2.65740367150367347755910876893, −2.20984866761775695625174137821, −2.18553531301260884791012770538, −1.97461115041838847854311288998, −1.41163479920336533613124313004, −1.11150612389930148990524845605, −1.09945564540253261297300848596, −1.08036710951809838189526682606,
1.08036710951809838189526682606, 1.09945564540253261297300848596, 1.11150612389930148990524845605, 1.41163479920336533613124313004, 1.97461115041838847854311288998, 2.18553531301260884791012770538, 2.20984866761775695625174137821, 2.65740367150367347755910876893, 2.89525105345502872843806324297, 3.06814001176919337519022237188, 3.33890072597395085145558201184, 3.81750756496842638922539402069, 3.91722517471613998744552799378, 3.95552809636614571698924215850, 4.04644317575707131527640531549, 4.60827826990408734939009745928, 4.61905077612086876373932789728, 4.68728365651808918880788767128, 4.77573403747939430720728191678, 4.86799811902599925316447841510, 5.38701991796606133332280685529, 5.38764584205613917884399296923, 5.59781757676187892478949981359, 5.95610174947768459102177880246, 6.15906246070400453764973182937