Properties

Label 10-1303e5-1303.1302-c0e5-0-0
Degree $10$
Conductor $3.756\times 10^{15}$
Sign $1$
Analytic cond. $0.116280$
Root an. cond. $0.806400$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5·9-s − 13-s − 5·18-s − 23-s + 5·25-s + 26-s − 41-s + 46-s + 5·49-s − 5·50-s − 61-s − 67-s − 79-s + 15·81-s + 82-s − 83-s − 89-s − 5·98-s − 103-s − 109-s − 113-s − 5·117-s + 5·121-s + 122-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2-s + 5·9-s − 13-s − 5·18-s − 23-s + 5·25-s + 26-s − 41-s + 46-s + 5·49-s − 5·50-s − 61-s − 67-s − 79-s + 15·81-s + 82-s − 83-s − 89-s − 5·98-s − 103-s − 109-s − 113-s − 5·117-s + 5·121-s + 122-s + 127-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(1303^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(1303^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(10\)
Conductor: \(1303^{5}\)
Sign: $1$
Analytic conductor: \(0.116280\)
Root analytic conductor: \(0.806400\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1303} (1302, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((10,\ 1303^{5} ,\ ( \ : 0, 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9750123453\)
\(L(\frac12)\) \(\approx\) \(0.9750123453\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad1303$C_1$ \( ( 1 - T )^{5} \)
good2$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
13$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
23$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
41$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
61$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
67$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
79$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
83$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
89$C_{10}$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{5}( 1 + T )^{5} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.15906246070400453764973182937, −5.95610174947768459102177880246, −5.59781757676187892478949981359, −5.38764584205613917884399296923, −5.38701991796606133332280685529, −4.86799811902599925316447841510, −4.77573403747939430720728191678, −4.68728365651808918880788767128, −4.61905077612086876373932789728, −4.60827826990408734939009745928, −4.04644317575707131527640531549, −3.95552809636614571698924215850, −3.91722517471613998744552799378, −3.81750756496842638922539402069, −3.33890072597395085145558201184, −3.06814001176919337519022237188, −2.89525105345502872843806324297, −2.65740367150367347755910876893, −2.20984866761775695625174137821, −2.18553531301260884791012770538, −1.97461115041838847854311288998, −1.41163479920336533613124313004, −1.11150612389930148990524845605, −1.09945564540253261297300848596, −1.08036710951809838189526682606, 1.08036710951809838189526682606, 1.09945564540253261297300848596, 1.11150612389930148990524845605, 1.41163479920336533613124313004, 1.97461115041838847854311288998, 2.18553531301260884791012770538, 2.20984866761775695625174137821, 2.65740367150367347755910876893, 2.89525105345502872843806324297, 3.06814001176919337519022237188, 3.33890072597395085145558201184, 3.81750756496842638922539402069, 3.91722517471613998744552799378, 3.95552809636614571698924215850, 4.04644317575707131527640531549, 4.60827826990408734939009745928, 4.61905077612086876373932789728, 4.68728365651808918880788767128, 4.77573403747939430720728191678, 4.86799811902599925316447841510, 5.38701991796606133332280685529, 5.38764584205613917884399296923, 5.59781757676187892478949981359, 5.95610174947768459102177880246, 6.15906246070400453764973182937

Graph of the $Z$-function along the critical line