L(s) = 1 | + 4·5-s + 6·7-s − 5·9-s − 4·11-s − 4·13-s − 6·17-s − 6·19-s − 3·25-s + 8·29-s + 12·31-s + 24·35-s + 10·37-s + 14·41-s − 12·43-s − 20·45-s + 2·47-s + 21·49-s + 26·53-s − 16·55-s + 22·59-s + 2·61-s − 30·63-s − 16·65-s − 14·67-s − 4·71-s + 18·73-s − 24·77-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 2.26·7-s − 5/3·9-s − 1.20·11-s − 1.10·13-s − 1.45·17-s − 1.37·19-s − 3/5·25-s + 1.48·29-s + 2.15·31-s + 4.05·35-s + 1.64·37-s + 2.18·41-s − 1.82·43-s − 2.98·45-s + 0.291·47-s + 3·49-s + 3.57·53-s − 2.15·55-s + 2.86·59-s + 0.256·61-s − 3.77·63-s − 1.98·65-s − 1.71·67-s − 0.474·71-s + 2.10·73-s − 2.73·77-s + ⋯ |
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
14.09235826 |
L(21) |
≈ |
14.09235826 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | (1−T)6 |
| 17 | (1+T)6 |
good | 3 | 1+5T2+20T4+8T5+64T6+8pT7+20p2T8+5p4T10+p6T12 |
| 5 | 1−4T+19T2−2p2T3+172T4−406T5+44p2T6−406pT7+172p2T8−2p5T9+19p4T10−4p5T11+p6T12 |
| 11 | 1+4T+40T2+156T3+763T4+2912T5+9752T6+2912pT7+763p2T8+156p3T9+40p4T10+4p5T11+p6T12 |
| 13 | 1+4T+32T2+92T3+683T4+1720T5+10040T6+1720pT7+683p2T8+92p3T9+32p4T10+4p5T11+p6T12 |
| 19 | 1+6T+106T2+514T3+4851T4+18492T5+121508T6+18492pT7+4851p2T8+514p3T9+106p4T10+6p5T11+p6T12 |
| 23 | 1+86T2−96T3+3467T4−5712T5+93404T6−5712pT7+3467p2T8−96p3T9+86p4T10+p6T12 |
| 29 | 1−8T+168T2−1016T3+11691T4−54744T5+444296T6−54744pT7+11691p2T8−1016p3T9+168p4T10−8p5T11+p6T12 |
| 31 | 1−12T+169T2−1340T3+11940T4−72636T5+478676T6−72636pT7+11940p2T8−1340p3T9+169p4T10−12p5T11+p6T12 |
| 37 | 1−10T+158T2−794T3+7235T4−15484T5+204204T6−15484pT7+7235p2T8−794p3T9+158p4T10−10p5T11+p6T12 |
| 41 | 1−14T+239T2−2162T3+22152T4−153476T5+1169032T6−153476pT7+22152p2T8−2162p3T9+239p4T10−14p5T11+p6T12 |
| 43 | 1+12T+267T2+2214T3+27652T4+172218T5+1548504T6+172218pT7+27652p2T8+2214p3T9+267p4T10+12p5T11+p6T12 |
| 47 | 1−2T+68T2−458T3+5539T4−23048T5+308656T6−23048pT7+5539p2T8−458p3T9+68p4T10−2p5T11+p6T12 |
| 53 | 1−26T+561T2−7788T3+94040T4−868866T5+7109300T6−868866pT7+94040p2T8−7788p3T9+561p4T10−26p5T11+p6T12 |
| 59 | 1−22T+446T2−6234T3+73575T4−720764T5+5987812T6−720764pT7+73575p2T8−6234p3T9+446p4T10−22p5T11+p6T12 |
| 61 | 1−2T+235T2−1290T3+22528T4−199940T5+1453204T6−199940pT7+22528p2T8−1290p3T9+235p4T10−2p5T11+p6T12 |
| 67 | 1+14T+311T2+3190T3+43348T4+354524T5+3651136T6+354524pT7+43348p2T8+3190p3T9+311p4T10+14p5T11+p6T12 |
| 71 | 1+4T+222T2+724T3+26347T4+80736T5+2231500T6+80736pT7+26347p2T8+724p3T9+222p4T10+4p5T11+p6T12 |
| 73 | 1−18T+295T2−3662T3+37868T4−345492T5+3189936T6−345492pT7+37868p2T8−3662p3T9+295p4T10−18p5T11+p6T12 |
| 79 | 1+14T+304T2+4294T3+53683T4+544952T5+5699384T6+544952pT7+53683p2T8+4294p3T9+304p4T10+14p5T11+p6T12 |
| 83 | 1−8T+92T2−304T3+3195T4+75472T5−523856T6+75472pT7+3195p2T8−304p3T9+92p4T10−8p5T11+p6T12 |
| 89 | 1−6T+152T2−1298T3+11307T4−28168T5+1079480T6−28168pT7+11307p2T8−1298p3T9+152p4T10−6p5T11+p6T12 |
| 97 | 1−20T+635T2−9326T3+161324T4−1773162T5+21172872T6−1773162pT7+161324p2T8−9326p3T9+635p4T10−20p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.41354160169724615507728757838, −4.20810241207810829076160258075, −4.10140878561863739658955549193, −3.96489922628469560158487204407, −3.92253417032118084811303506311, −3.79900034025996332857232795601, −3.71713915686571034639885253720, −3.08926979906501893785924139370, −2.93788396227532454525846343632, −2.86565090084655429685845423603, −2.81514421503545396260763925825, −2.80515344890528305541842800254, −2.60139390952012692499057360149, −2.26334827753477923657006636715, −2.14986477984605906327721950078, −2.14578057839082416719690310075, −1.98845175238956406518744568915, −1.88969443124226177158445817433, −1.87257149522910020060418157941, −1.22492157377255172574602500417, −1.20661910779878850467317617513, −0.978791812451715055763874517882, −0.56183417445415962756432931572, −0.52074293022809453829544230120, −0.38502636708999702641485509839,
0.38502636708999702641485509839, 0.52074293022809453829544230120, 0.56183417445415962756432931572, 0.978791812451715055763874517882, 1.20661910779878850467317617513, 1.22492157377255172574602500417, 1.87257149522910020060418157941, 1.88969443124226177158445817433, 1.98845175238956406518744568915, 2.14578057839082416719690310075, 2.14986477984605906327721950078, 2.26334827753477923657006636715, 2.60139390952012692499057360149, 2.80515344890528305541842800254, 2.81514421503545396260763925825, 2.86565090084655429685845423603, 2.93788396227532454525846343632, 3.08926979906501893785924139370, 3.71713915686571034639885253720, 3.79900034025996332857232795601, 3.92253417032118084811303506311, 3.96489922628469560158487204407, 4.10140878561863739658955549193, 4.20810241207810829076160258075, 4.41354160169724615507728757838
Plot not available for L-functions of degree greater than 10.