L(s) = 1 | − 7·3-s − 3·5-s − 4·7-s + 56·9-s − 3·11-s + 52·13-s + 21·15-s + 31·17-s − 89·19-s + 28·21-s + 201·23-s + 42·25-s − 91·27-s − 380·29-s + 339·31-s + 21·33-s + 12·35-s − 535·37-s − 364·39-s + 116·41-s − 536·43-s − 168·45-s + 205·47-s − 757·49-s − 217·51-s + 757·53-s + 9·55-s + ⋯ |
L(s) = 1 | − 1.34·3-s − 0.268·5-s − 0.215·7-s + 2.07·9-s − 0.0822·11-s + 1.10·13-s + 0.361·15-s + 0.442·17-s − 1.07·19-s + 0.290·21-s + 1.82·23-s + 0.335·25-s − 0.648·27-s − 2.43·29-s + 1.96·31-s + 0.110·33-s + 0.0579·35-s − 2.37·37-s − 1.49·39-s + 0.441·41-s − 1.90·43-s − 0.556·45-s + 0.636·47-s − 2.20·49-s − 0.595·51-s + 1.96·53-s + 0.0220·55-s + ⋯ |
Λ(s)=(=((236⋅76)s/2ΓC(s)6L(s)Λ(4−s)
Λ(s)=(=((236⋅76)s/2ΓC(s+3/2)6L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.961704259 |
L(21) |
≈ |
2.961704259 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+4T+773T2+328pT3+773p3T4+4p6T5+p9T6 |
good | 3 | 1+7T−7T2−350T3−973T4+4711T5+56614T6+4711p3T7−973p6T8−350p9T9−7p12T10+7p15T11+p18T12 |
| 5 | 1+3T−33T2+2752T3+453T4−39771T5+5269094T6−39771p3T7+453p6T8+2752p9T9−33p12T10+3p15T11+p18T12 |
| 11 | 1+3T−1671T2−88206T3+446451T4+70224843T5+3117041062T6+70224843p3T7+446451p6T8−88206p9T9−1671p12T10+3p15T11+p18T12 |
| 13 | (1−2pT+4347T2−140572T3+4347p3T4−2p7T5+p9T6)2 |
| 17 | 1−31T−7341T2+5924pT3+22585393T4+294225803T5−92586620842T6+294225803p3T7+22585393p6T8+5924p10T9−7341p12T10−31p15T11+p18T12 |
| 19 | 1+89T−13039T2−531306T3+188901763T4+3714875569T5−1304484035114T6+3714875569p3T7+188901763p6T8−531306p9T9−13039p12T10+89p15T11+p18T12 |
| 23 | 1−201T−7035T2+419006T3+672679263T4−33819862221T5−4987613588554T6−33819862221p3T7+672679263p6T8+419006p9T9−7035p12T10−201p15T11+p18T12 |
| 29 | (1+190T+81643T2+9219316T3+81643p3T4+190p6T5+p9T6)2 |
| 31 | 1−339T+14469T2+1234882T3+1116704127T4−44284930023T5−38410082180298T6−44284930023p3T7+1116704127p6T8+1234882p9T9+14469p12T10−339p15T11+p18T12 |
| 37 | 1+535T+77743T2+4911224T3+118429129pT4+1188076376281T5+166239153232886T6+1188076376281p3T7+118429129p7T8+4911224p9T9+77743p12T10+535p15T11+p18T12 |
| 41 | (1−58T+164327T2−4134444T3+164327p3T4−58p6T5+p9T6)2 |
| 43 | (1+268T+132841T2+18272264T3+132841p3T4+268p6T5+p9T6)2 |
| 47 | 1−205T−183403T2+16447246T3+20990523375T4+323493805591T5−2509221820128074T6+323493805591p3T7+20990523375p6T8+16447246p9T9−183403p12T10−205p15T11+p18T12 |
| 53 | 1−757T+229743T2+41591296T3−47359243259T4+8853768931901T5−926599751279866T6+8853768931901p3T7−47359243259p6T8+41591296p9T9+229743p12T10−757p15T11+p18T12 |
| 59 | 1+1799T+1576225T2+1115416106T3+732038218331T4+402383977564751T5+190135753613171014T6+402383977564751p3T7+732038218331p6T8+1115416106p9T9+1576225p12T10+1799p15T11+p18T12 |
| 61 | 1−625T−246217T2+136351344T3+94023700837T4−21668489332199T5−17403170402691818T6−21668489332199p3T7+94023700837p6T8+136351344p9T9−246217p12T10−625p15T11+p18T12 |
| 67 | 1+495T−430551T2−36746478T3+161353409283T4−31007237744241T5−70581306208381018T6−31007237744241p3T7+161353409283p6T8−36746478p9T9−430551p12T10+495p15T11+p18T12 |
| 71 | (1−640T+1196037T2−465417472T3+1196037p3T4−640p6T5+p9T6)2 |
| 73 | 1−443T−406693T2+622914612T3−68154601487T4−127540200423001T5+144654083731272358T6−127540200423001p3T7−68154601487p6T8+622914612p9T9−406693p12T10−443p15T11+p18T12 |
| 79 | 1+pT−940435T2+213350022T3+434920484023T4−120129257254237T5−198873325035594506T6−120129257254237p3T7+434920484023p6T8+213350022p9T9−940435p12T10+p16T11+p18T12 |
| 83 | (1−2372T+3356817T2−2979344792T3+3356817p3T4−2372p6T5+p9T6)2 |
| 89 | 1+821T−895221T2−833200796T3+485399771137T4+256153722115943T5−245058388113291418T6+256153722115943p3T7+485399771137p6T8−833200796p9T9−895221p12T10+821p15T11+p18T12 |
| 97 | (1+342T+11679T2+841589780T3+11679p3T4+342p6T5+p9T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.67477483600321017438985428283, −5.18631218294110848349046503401, −5.01242876688093585355879539575, −4.93248694890728635556496067775, −4.82677311773140415896619401721, −4.80702705644141529297265376286, −4.72133954525533282089212281347, −4.19996289360554350656073417885, −4.05034970713377870312402110295, −3.86345278712985361287010084113, −3.66030146026013192656131967534, −3.47328753435172540415278059969, −3.27291564245473603064669454160, −3.18356488266125512763472656157, −2.89895318812325700315437532636, −2.65139779361766959150216945248, −2.12885061169133961700729543221, −2.00894443011009932089532117341, −1.80522746020129402725252227013, −1.62987688819571003712722124716, −1.29676463747758517786720818996, −0.865024692494759317481763741351, −0.78865202048150009922617986408, −0.56819401759378883903723423821, −0.21958077998283339074240728515,
0.21958077998283339074240728515, 0.56819401759378883903723423821, 0.78865202048150009922617986408, 0.865024692494759317481763741351, 1.29676463747758517786720818996, 1.62987688819571003712722124716, 1.80522746020129402725252227013, 2.00894443011009932089532117341, 2.12885061169133961700729543221, 2.65139779361766959150216945248, 2.89895318812325700315437532636, 3.18356488266125512763472656157, 3.27291564245473603064669454160, 3.47328753435172540415278059969, 3.66030146026013192656131967534, 3.86345278712985361287010084113, 4.05034970713377870312402110295, 4.19996289360554350656073417885, 4.72133954525533282089212281347, 4.80702705644141529297265376286, 4.82677311773140415896619401721, 4.93248694890728635556496067775, 5.01242876688093585355879539575, 5.18631218294110848349046503401, 5.67477483600321017438985428283
Plot not available for L-functions of degree greater than 10.