Properties

Label 448.4.i.j.65.1
Level $448$
Weight $4$
Character 448.65
Analytic conductor $26.433$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(65,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.65");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.11163123.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 14x^{4} + 49x^{2} + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.1
Root \(2.13755i\) of defining polynomial
Character \(\chi\) \(=\) 448.65
Dual form 448.4.i.j.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.77144 - 8.26438i) q^{3} +(-7.90468 + 13.6913i) q^{5} +(-0.861792 + 18.5002i) q^{7} +(-32.0333 + 55.4834i) q^{9} +(10.8997 + 18.8788i) q^{11} -21.3423 q^{13} +150.867 q^{15} +(-37.8955 - 65.6370i) q^{17} +(-10.6432 + 18.4345i) q^{19} +(157.005 - 81.1505i) q^{21} +(51.1336 - 88.5660i) q^{23} +(-62.4679 - 108.197i) q^{25} +353.723 q^{27} -91.0008 q^{29} +(-33.4243 - 57.8926i) q^{31} +(104.015 - 180.159i) q^{33} +(-246.480 - 158.037i) q^{35} +(-84.2986 + 146.009i) q^{37} +(101.834 + 176.381i) q^{39} +101.555 q^{41} +314.402 q^{43} +(-506.426 - 877.156i) q^{45} +(-134.672 + 233.260i) q^{47} +(-341.515 - 31.8866i) q^{49} +(-361.633 + 626.366i) q^{51} +(154.430 + 267.480i) q^{53} -344.635 q^{55} +203.133 q^{57} +(-404.372 - 700.393i) q^{59} +(326.882 - 566.177i) q^{61} +(-998.847 - 640.438i) q^{63} +(168.704 - 292.204i) q^{65} +(-236.930 - 410.375i) q^{67} -975.925 q^{69} +157.998 q^{71} +(-135.038 - 233.894i) q^{73} +(-596.124 + 1032.52i) q^{75} +(-358.656 + 185.377i) q^{77} +(-162.729 + 281.854i) q^{79} +(-822.869 - 1425.25i) q^{81} +1033.08 q^{83} +1198.21 q^{85} +(434.205 + 752.065i) q^{87} +(-74.8843 + 129.703i) q^{89} +(18.3926 - 394.837i) q^{91} +(-318.964 + 552.462i) q^{93} +(-168.262 - 291.438i) q^{95} -1865.72 q^{97} -1396.62 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 7 q^{3} - 3 q^{5} - 4 q^{7} - 18 q^{9} - 3 q^{11} + 52 q^{13} + 254 q^{15} + 31 q^{17} - 89 q^{19} + 375 q^{21} + 201 q^{23} - 300 q^{25} + 938 q^{27} - 380 q^{29} + 339 q^{31} + 105 q^{33} + 473 q^{35}+ \cdots - 4620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.77144 8.26438i −0.918265 1.59048i −0.802050 0.597257i \(-0.796257\pi\)
−0.116215 0.993224i \(-0.537076\pi\)
\(4\) 0 0
\(5\) −7.90468 + 13.6913i −0.707016 + 1.22459i 0.258943 + 0.965893i \(0.416626\pi\)
−0.965959 + 0.258695i \(0.916708\pi\)
\(6\) 0 0
\(7\) −0.861792 + 18.5002i −0.0465324 + 0.998917i
\(8\) 0 0
\(9\) −32.0333 + 55.4834i −1.18642 + 2.05494i
\(10\) 0 0
\(11\) 10.8997 + 18.8788i 0.298762 + 0.517471i 0.975853 0.218428i \(-0.0700929\pi\)
−0.677091 + 0.735899i \(0.736760\pi\)
\(12\) 0 0
\(13\) −21.3423 −0.455330 −0.227665 0.973740i \(-0.573109\pi\)
−0.227665 + 0.973740i \(0.573109\pi\)
\(14\) 0 0
\(15\) 150.867 2.59691
\(16\) 0 0
\(17\) −37.8955 65.6370i −0.540648 0.936430i −0.998867 0.0475903i \(-0.984846\pi\)
0.458219 0.888839i \(-0.348488\pi\)
\(18\) 0 0
\(19\) −10.6432 + 18.4345i −0.128511 + 0.222588i −0.923100 0.384560i \(-0.874353\pi\)
0.794589 + 0.607148i \(0.207687\pi\)
\(20\) 0 0
\(21\) 157.005 81.1505i 1.63149 0.843261i
\(22\) 0 0
\(23\) 51.1336 88.5660i 0.463570 0.802926i −0.535566 0.844493i \(-0.679902\pi\)
0.999136 + 0.0415673i \(0.0132351\pi\)
\(24\) 0 0
\(25\) −62.4679 108.197i −0.499743 0.865580i
\(26\) 0 0
\(27\) 353.723 2.52126
\(28\) 0 0
\(29\) −91.0008 −0.582704 −0.291352 0.956616i \(-0.594105\pi\)
−0.291352 + 0.956616i \(0.594105\pi\)
\(30\) 0 0
\(31\) −33.4243 57.8926i −0.193651 0.335413i 0.752807 0.658242i \(-0.228700\pi\)
−0.946457 + 0.322829i \(0.895366\pi\)
\(32\) 0 0
\(33\) 104.015 180.159i 0.548686 0.950351i
\(34\) 0 0
\(35\) −246.480 158.037i −1.19036 0.763233i
\(36\) 0 0
\(37\) −84.2986 + 146.009i −0.374557 + 0.648752i −0.990261 0.139226i \(-0.955539\pi\)
0.615704 + 0.787978i \(0.288872\pi\)
\(38\) 0 0
\(39\) 101.834 + 176.381i 0.418113 + 0.724193i
\(40\) 0 0
\(41\) 101.555 0.386836 0.193418 0.981116i \(-0.438043\pi\)
0.193418 + 0.981116i \(0.438043\pi\)
\(42\) 0 0
\(43\) 314.402 1.11502 0.557509 0.830171i \(-0.311757\pi\)
0.557509 + 0.830171i \(0.311757\pi\)
\(44\) 0 0
\(45\) −506.426 877.156i −1.67764 2.90575i
\(46\) 0 0
\(47\) −134.672 + 233.260i −0.417957 + 0.723923i −0.995734 0.0922717i \(-0.970587\pi\)
0.577777 + 0.816195i \(0.303921\pi\)
\(48\) 0 0
\(49\) −341.515 31.8866i −0.995669 0.0929639i
\(50\) 0 0
\(51\) −361.633 + 626.366i −0.992916 + 1.71978i
\(52\) 0 0
\(53\) 154.430 + 267.480i 0.400236 + 0.693230i 0.993754 0.111591i \(-0.0355946\pi\)
−0.593518 + 0.804821i \(0.702261\pi\)
\(54\) 0 0
\(55\) −344.635 −0.844918
\(56\) 0 0
\(57\) 203.133 0.472029
\(58\) 0 0
\(59\) −404.372 700.393i −0.892284 1.54548i −0.837131 0.547003i \(-0.815769\pi\)
−0.0551526 0.998478i \(-0.517565\pi\)
\(60\) 0 0
\(61\) 326.882 566.177i 0.686115 1.18839i −0.286971 0.957939i \(-0.592648\pi\)
0.973085 0.230446i \(-0.0740185\pi\)
\(62\) 0 0
\(63\) −998.847 640.438i −1.99751 1.28076i
\(64\) 0 0
\(65\) 168.704 292.204i 0.321925 0.557591i
\(66\) 0 0
\(67\) −236.930 410.375i −0.432024 0.748288i 0.565023 0.825075i \(-0.308867\pi\)
−0.997048 + 0.0767872i \(0.975534\pi\)
\(68\) 0 0
\(69\) −975.925 −1.70272
\(70\) 0 0
\(71\) 157.998 0.264098 0.132049 0.991243i \(-0.457844\pi\)
0.132049 + 0.991243i \(0.457844\pi\)
\(72\) 0 0
\(73\) −135.038 233.894i −0.216508 0.375002i 0.737230 0.675642i \(-0.236133\pi\)
−0.953738 + 0.300639i \(0.902800\pi\)
\(74\) 0 0
\(75\) −596.124 + 1032.52i −0.917792 + 1.58966i
\(76\) 0 0
\(77\) −358.656 + 185.377i −0.530813 + 0.274359i
\(78\) 0 0
\(79\) −162.729 + 281.854i −0.231752 + 0.401406i −0.958324 0.285684i \(-0.907779\pi\)
0.726572 + 0.687091i \(0.241112\pi\)
\(80\) 0 0
\(81\) −822.869 1425.25i −1.12876 1.95508i
\(82\) 0 0
\(83\) 1033.08 1.36621 0.683104 0.730321i \(-0.260630\pi\)
0.683104 + 0.730321i \(0.260630\pi\)
\(84\) 0 0
\(85\) 1198.21 1.52899
\(86\) 0 0
\(87\) 434.205 + 752.065i 0.535077 + 0.926780i
\(88\) 0 0
\(89\) −74.8843 + 129.703i −0.0891879 + 0.154478i −0.907168 0.420768i \(-0.861760\pi\)
0.817980 + 0.575246i \(0.195094\pi\)
\(90\) 0 0
\(91\) 18.3926 394.837i 0.0211876 0.454837i
\(92\) 0 0
\(93\) −318.964 + 552.462i −0.355646 + 0.615996i
\(94\) 0 0
\(95\) −168.262 291.438i −0.181719 0.314746i
\(96\) 0 0
\(97\) −1865.72 −1.95294 −0.976468 0.215663i \(-0.930809\pi\)
−0.976468 + 0.215663i \(0.930809\pi\)
\(98\) 0 0
\(99\) −1396.62 −1.41783
\(100\) 0 0
\(101\) 267.275 + 462.933i 0.263315 + 0.456075i 0.967121 0.254317i \(-0.0818508\pi\)
−0.703806 + 0.710392i \(0.748517\pi\)
\(102\) 0 0
\(103\) 659.808 1142.82i 0.631193 1.09326i −0.356115 0.934442i \(-0.615899\pi\)
0.987308 0.158816i \(-0.0507677\pi\)
\(104\) 0 0
\(105\) −130.016 + 2791.07i −0.120840 + 2.59410i
\(106\) 0 0
\(107\) 346.778 600.637i 0.313311 0.542671i −0.665766 0.746161i \(-0.731895\pi\)
0.979077 + 0.203490i \(0.0652284\pi\)
\(108\) 0 0
\(109\) −982.997 1702.60i −0.863798 1.49614i −0.868236 0.496152i \(-0.834746\pi\)
0.00443729 0.999990i \(-0.498588\pi\)
\(110\) 0 0
\(111\) 1608.90 1.37577
\(112\) 0 0
\(113\) 2167.14 1.80414 0.902068 0.431595i \(-0.142049\pi\)
0.902068 + 0.431595i \(0.142049\pi\)
\(114\) 0 0
\(115\) 808.390 + 1400.17i 0.655502 + 1.13536i
\(116\) 0 0
\(117\) 683.665 1184.14i 0.540212 0.935675i
\(118\) 0 0
\(119\) 1246.96 644.509i 0.960573 0.496488i
\(120\) 0 0
\(121\) 427.893 741.132i 0.321482 0.556824i
\(122\) 0 0
\(123\) −484.565 839.291i −0.355217 0.615255i
\(124\) 0 0
\(125\) −1.01640 −0.000727276
\(126\) 0 0
\(127\) 1443.60 1.00865 0.504324 0.863514i \(-0.331742\pi\)
0.504324 + 0.863514i \(0.331742\pi\)
\(128\) 0 0
\(129\) −1500.15 2598.33i −1.02388 1.77342i
\(130\) 0 0
\(131\) 1062.64 1840.55i 0.708728 1.22755i −0.256601 0.966518i \(-0.582602\pi\)
0.965329 0.261036i \(-0.0840642\pi\)
\(132\) 0 0
\(133\) −331.870 212.788i −0.216367 0.138730i
\(134\) 0 0
\(135\) −2796.07 + 4842.93i −1.78257 + 3.08750i
\(136\) 0 0
\(137\) 202.737 + 351.151i 0.126431 + 0.218985i 0.922291 0.386495i \(-0.126315\pi\)
−0.795861 + 0.605480i \(0.792981\pi\)
\(138\) 0 0
\(139\) 1812.24 1.10585 0.552923 0.833232i \(-0.313512\pi\)
0.552923 + 0.833232i \(0.313512\pi\)
\(140\) 0 0
\(141\) 2570.33 1.53518
\(142\) 0 0
\(143\) −232.625 402.918i −0.136035 0.235620i
\(144\) 0 0
\(145\) 719.332 1245.92i 0.411981 0.713572i
\(146\) 0 0
\(147\) 1365.99 + 2974.55i 0.766431 + 1.66896i
\(148\) 0 0
\(149\) −1446.29 + 2505.04i −0.795197 + 1.37732i 0.127517 + 0.991836i \(0.459299\pi\)
−0.922714 + 0.385485i \(0.874034\pi\)
\(150\) 0 0
\(151\) −619.634 1073.24i −0.333941 0.578403i 0.649340 0.760498i \(-0.275045\pi\)
−0.983281 + 0.182096i \(0.941712\pi\)
\(152\) 0 0
\(153\) 4855.68 2.56574
\(154\) 0 0
\(155\) 1056.83 0.547657
\(156\) 0 0
\(157\) −891.686 1544.45i −0.453276 0.785096i 0.545312 0.838233i \(-0.316411\pi\)
−0.998587 + 0.0531370i \(0.983078\pi\)
\(158\) 0 0
\(159\) 1473.70 2552.53i 0.735046 1.27314i
\(160\) 0 0
\(161\) 1594.42 + 1022.31i 0.780485 + 0.500429i
\(162\) 0 0
\(163\) −639.683 + 1107.96i −0.307385 + 0.532407i −0.977790 0.209589i \(-0.932787\pi\)
0.670404 + 0.741996i \(0.266121\pi\)
\(164\) 0 0
\(165\) 1644.40 + 2848.19i 0.775859 + 1.34383i
\(166\) 0 0
\(167\) −971.264 −0.450052 −0.225026 0.974353i \(-0.572247\pi\)
−0.225026 + 0.974353i \(0.572247\pi\)
\(168\) 0 0
\(169\) −1741.51 −0.792675
\(170\) 0 0
\(171\) −681.873 1181.04i −0.304937 0.528166i
\(172\) 0 0
\(173\) 264.423 457.994i 0.116207 0.201276i −0.802055 0.597250i \(-0.796260\pi\)
0.918261 + 0.395975i \(0.129593\pi\)
\(174\) 0 0
\(175\) 2055.51 1062.42i 0.887897 0.458924i
\(176\) 0 0
\(177\) −3858.87 + 6683.77i −1.63870 + 2.83832i
\(178\) 0 0
\(179\) 74.5001 + 129.038i 0.0311084 + 0.0538813i 0.881160 0.472817i \(-0.156763\pi\)
−0.850052 + 0.526699i \(0.823430\pi\)
\(180\) 0 0
\(181\) −3624.17 −1.48830 −0.744151 0.668011i \(-0.767146\pi\)
−0.744151 + 0.668011i \(0.767146\pi\)
\(182\) 0 0
\(183\) −6238.80 −2.52014
\(184\) 0 0
\(185\) −1332.71 2308.32i −0.529635 0.917355i
\(186\) 0 0
\(187\) 826.100 1430.85i 0.323050 0.559540i
\(188\) 0 0
\(189\) −304.836 + 6543.95i −0.117320 + 2.51853i
\(190\) 0 0
\(191\) 1592.30 2757.94i 0.603218 1.04480i −0.389113 0.921190i \(-0.627218\pi\)
0.992330 0.123614i \(-0.0394484\pi\)
\(192\) 0 0
\(193\) 2298.82 + 3981.67i 0.857370 + 1.48501i 0.874429 + 0.485153i \(0.161236\pi\)
−0.0170593 + 0.999854i \(0.505430\pi\)
\(194\) 0 0
\(195\) −3219.85 −1.18245
\(196\) 0 0
\(197\) 3877.84 1.40246 0.701230 0.712935i \(-0.252635\pi\)
0.701230 + 0.712935i \(0.252635\pi\)
\(198\) 0 0
\(199\) −988.062 1711.37i −0.351969 0.609628i 0.634625 0.772820i \(-0.281154\pi\)
−0.986594 + 0.163192i \(0.947821\pi\)
\(200\) 0 0
\(201\) −2261.00 + 3916.16i −0.793425 + 1.37425i
\(202\) 0 0
\(203\) 78.4237 1683.53i 0.0271146 0.582073i
\(204\) 0 0
\(205\) −802.761 + 1390.42i −0.273499 + 0.473714i
\(206\) 0 0
\(207\) 3275.96 + 5674.13i 1.09998 + 1.90521i
\(208\) 0 0
\(209\) −464.030 −0.153577
\(210\) 0 0
\(211\) −4169.50 −1.36038 −0.680190 0.733036i \(-0.738103\pi\)
−0.680190 + 0.733036i \(0.738103\pi\)
\(212\) 0 0
\(213\) −753.880 1305.76i −0.242512 0.420043i
\(214\) 0 0
\(215\) −2485.24 + 4304.57i −0.788336 + 1.36544i
\(216\) 0 0
\(217\) 1099.83 568.464i 0.344061 0.177834i
\(218\) 0 0
\(219\) −1288.66 + 2232.02i −0.397623 + 0.688703i
\(220\) 0 0
\(221\) 808.777 + 1400.84i 0.246173 + 0.426384i
\(222\) 0 0
\(223\) −1595.43 −0.479093 −0.239547 0.970885i \(-0.576999\pi\)
−0.239547 + 0.970885i \(0.576999\pi\)
\(224\) 0 0
\(225\) 8004.21 2.37162
\(226\) 0 0
\(227\) −428.905 742.885i −0.125407 0.217211i 0.796485 0.604658i \(-0.206690\pi\)
−0.921892 + 0.387447i \(0.873357\pi\)
\(228\) 0 0
\(229\) 39.2440 67.9726i 0.0113245 0.0196146i −0.860308 0.509775i \(-0.829729\pi\)
0.871632 + 0.490161i \(0.163062\pi\)
\(230\) 0 0
\(231\) 3243.33 + 2079.55i 0.923790 + 0.592313i
\(232\) 0 0
\(233\) −329.882 + 571.373i −0.0927524 + 0.160652i −0.908668 0.417519i \(-0.862900\pi\)
0.815916 + 0.578171i \(0.196233\pi\)
\(234\) 0 0
\(235\) −2129.08 3687.68i −0.591005 1.02365i
\(236\) 0 0
\(237\) 3105.80 0.851239
\(238\) 0 0
\(239\) −2879.88 −0.779430 −0.389715 0.920935i \(-0.627427\pi\)
−0.389715 + 0.920935i \(0.627427\pi\)
\(240\) 0 0
\(241\) 1167.26 + 2021.75i 0.311991 + 0.540384i 0.978793 0.204851i \(-0.0656709\pi\)
−0.666803 + 0.745234i \(0.732338\pi\)
\(242\) 0 0
\(243\) −3077.29 + 5330.01i −0.812378 + 1.40708i
\(244\) 0 0
\(245\) 3136.13 4423.73i 0.817797 1.15356i
\(246\) 0 0
\(247\) 227.150 393.435i 0.0585150 0.101351i
\(248\) 0 0
\(249\) −4929.28 8537.77i −1.25454 2.17293i
\(250\) 0 0
\(251\) 1386.81 0.348743 0.174372 0.984680i \(-0.444211\pi\)
0.174372 + 0.984680i \(0.444211\pi\)
\(252\) 0 0
\(253\) 2229.37 0.553988
\(254\) 0 0
\(255\) −5717.18 9902.44i −1.40401 2.43182i
\(256\) 0 0
\(257\) 3026.68 5242.37i 0.734628 1.27241i −0.220258 0.975442i \(-0.570690\pi\)
0.954886 0.296971i \(-0.0959766\pi\)
\(258\) 0 0
\(259\) −2628.56 1685.37i −0.630620 0.404339i
\(260\) 0 0
\(261\) 2915.06 5049.03i 0.691332 1.19742i
\(262\) 0 0
\(263\) 501.708 + 868.983i 0.117630 + 0.203741i 0.918828 0.394658i \(-0.129137\pi\)
−0.801198 + 0.598399i \(0.795804\pi\)
\(264\) 0 0
\(265\) −4882.86 −1.13189
\(266\) 0 0
\(267\) 1429.22 0.327592
\(268\) 0 0
\(269\) 1756.03 + 3041.54i 0.398020 + 0.689391i 0.993482 0.113993i \(-0.0363642\pi\)
−0.595462 + 0.803384i \(0.703031\pi\)
\(270\) 0 0
\(271\) −19.4586 + 33.7033i −0.00436172 + 0.00755471i −0.868198 0.496218i \(-0.834722\pi\)
0.863836 + 0.503773i \(0.168055\pi\)
\(272\) 0 0
\(273\) −3350.84 + 1731.94i −0.742865 + 0.383962i
\(274\) 0 0
\(275\) 1361.76 2358.64i 0.298609 0.517205i
\(276\) 0 0
\(277\) −97.9751 169.698i −0.0212518 0.0368092i 0.855204 0.518292i \(-0.173432\pi\)
−0.876456 + 0.481482i \(0.840099\pi\)
\(278\) 0 0
\(279\) 4282.76 0.919005
\(280\) 0 0
\(281\) 809.583 0.171871 0.0859354 0.996301i \(-0.472612\pi\)
0.0859354 + 0.996301i \(0.472612\pi\)
\(282\) 0 0
\(283\) −1899.31 3289.70i −0.398947 0.690997i 0.594649 0.803985i \(-0.297291\pi\)
−0.993596 + 0.112989i \(0.963958\pi\)
\(284\) 0 0
\(285\) −1605.70 + 2781.16i −0.333732 + 0.578041i
\(286\) 0 0
\(287\) −87.5194 + 1878.79i −0.0180004 + 0.386417i
\(288\) 0 0
\(289\) −415.641 + 719.912i −0.0846003 + 0.146532i
\(290\) 0 0
\(291\) 8902.16 + 15419.0i 1.79331 + 3.10611i
\(292\) 0 0
\(293\) −3143.28 −0.626731 −0.313366 0.949633i \(-0.601457\pi\)
−0.313366 + 0.949633i \(0.601457\pi\)
\(294\) 0 0
\(295\) 12785.7 2.52343
\(296\) 0 0
\(297\) 3855.48 + 6677.88i 0.753257 + 1.30468i
\(298\) 0 0
\(299\) −1091.31 + 1890.20i −0.211077 + 0.365596i
\(300\) 0 0
\(301\) −270.949 + 5816.49i −0.0518845 + 1.11381i
\(302\) 0 0
\(303\) 2550.57 4417.72i 0.483586 0.837595i
\(304\) 0 0
\(305\) 5167.80 + 8950.89i 0.970188 + 1.68041i
\(306\) 0 0
\(307\) 7726.54 1.43641 0.718203 0.695833i \(-0.244965\pi\)
0.718203 + 0.695833i \(0.244965\pi\)
\(308\) 0 0
\(309\) −12593.0 −2.31841
\(310\) 0 0
\(311\) 738.953 + 1279.90i 0.134734 + 0.233366i 0.925496 0.378758i \(-0.123649\pi\)
−0.790762 + 0.612124i \(0.790315\pi\)
\(312\) 0 0
\(313\) 3410.86 5907.78i 0.615953 1.06686i −0.374264 0.927322i \(-0.622105\pi\)
0.990217 0.139539i \(-0.0445620\pi\)
\(314\) 0 0
\(315\) 16664.0 8613.06i 2.98067 1.54061i
\(316\) 0 0
\(317\) −368.611 + 638.453i −0.0653099 + 0.113120i −0.896831 0.442372i \(-0.854137\pi\)
0.831521 + 0.555493i \(0.187470\pi\)
\(318\) 0 0
\(319\) −991.882 1717.99i −0.174090 0.301533i
\(320\) 0 0
\(321\) −6618.53 −1.15081
\(322\) 0 0
\(323\) 1613.32 0.277917
\(324\) 0 0
\(325\) 1333.21 + 2309.18i 0.227548 + 0.394124i
\(326\) 0 0
\(327\) −9380.63 + 16247.7i −1.58639 + 2.74771i
\(328\) 0 0
\(329\) −4199.29 2692.49i −0.703691 0.451190i
\(330\) 0 0
\(331\) 1832.14 3173.36i 0.304241 0.526960i −0.672851 0.739778i \(-0.734931\pi\)
0.977092 + 0.212818i \(0.0682640\pi\)
\(332\) 0 0
\(333\) −5400.73 9354.34i −0.888764 1.53938i
\(334\) 0 0
\(335\) 7491.42 1.22179
\(336\) 0 0
\(337\) −3269.01 −0.528411 −0.264206 0.964466i \(-0.585110\pi\)
−0.264206 + 0.964466i \(0.585110\pi\)
\(338\) 0 0
\(339\) −10340.4 17910.1i −1.65667 2.86944i
\(340\) 0 0
\(341\) 728.630 1262.02i 0.115711 0.200418i
\(342\) 0 0
\(343\) 884.224 6290.61i 0.139194 0.990265i
\(344\) 0 0
\(345\) 7714.37 13361.7i 1.20385 2.08513i
\(346\) 0 0
\(347\) 4521.27 + 7831.07i 0.699465 + 1.21151i 0.968652 + 0.248422i \(0.0799118\pi\)
−0.269187 + 0.963088i \(0.586755\pi\)
\(348\) 0 0
\(349\) 5151.89 0.790185 0.395092 0.918641i \(-0.370713\pi\)
0.395092 + 0.918641i \(0.370713\pi\)
\(350\) 0 0
\(351\) −7549.26 −1.14800
\(352\) 0 0
\(353\) −1071.18 1855.33i −0.161510 0.279743i 0.773901 0.633307i \(-0.218303\pi\)
−0.935410 + 0.353564i \(0.884970\pi\)
\(354\) 0 0
\(355\) −1248.93 + 2163.20i −0.186722 + 0.323411i
\(356\) 0 0
\(357\) −11276.2 7230.07i −1.67171 1.07187i
\(358\) 0 0
\(359\) 714.986 1238.39i 0.105113 0.182061i −0.808671 0.588261i \(-0.799813\pi\)
0.913784 + 0.406200i \(0.133146\pi\)
\(360\) 0 0
\(361\) 3202.95 + 5547.66i 0.466970 + 0.808815i
\(362\) 0 0
\(363\) −8166.67 −1.18082
\(364\) 0 0
\(365\) 4269.74 0.612297
\(366\) 0 0
\(367\) 1510.16 + 2615.67i 0.214794 + 0.372034i 0.953209 0.302312i \(-0.0977586\pi\)
−0.738415 + 0.674347i \(0.764425\pi\)
\(368\) 0 0
\(369\) −3253.15 + 5634.62i −0.458949 + 0.794924i
\(370\) 0 0
\(371\) −5081.52 + 2626.47i −0.711103 + 0.367545i
\(372\) 0 0
\(373\) −823.554 + 1426.44i −0.114322 + 0.198011i −0.917508 0.397716i \(-0.869803\pi\)
0.803187 + 0.595727i \(0.203136\pi\)
\(374\) 0 0
\(375\) 4.84969 + 8.39991i 0.000667832 + 0.00115672i
\(376\) 0 0
\(377\) 1942.17 0.265323
\(378\) 0 0
\(379\) 4385.44 0.594366 0.297183 0.954821i \(-0.403953\pi\)
0.297183 + 0.954821i \(0.403953\pi\)
\(380\) 0 0
\(381\) −6888.03 11930.4i −0.926206 1.60424i
\(382\) 0 0
\(383\) 7194.48 12461.2i 0.959845 1.66250i 0.236975 0.971516i \(-0.423844\pi\)
0.722870 0.690984i \(-0.242823\pi\)
\(384\) 0 0
\(385\) 297.003 6375.81i 0.0393161 0.844003i
\(386\) 0 0
\(387\) −10071.3 + 17444.1i −1.32288 + 2.29130i
\(388\) 0 0
\(389\) −1332.78 2308.44i −0.173714 0.300881i 0.766002 0.642839i \(-0.222243\pi\)
−0.939715 + 0.341957i \(0.888910\pi\)
\(390\) 0 0
\(391\) −7750.94 −1.00251
\(392\) 0 0
\(393\) −20281.3 −2.60320
\(394\) 0 0
\(395\) −2572.64 4455.94i −0.327705 0.567601i
\(396\) 0 0
\(397\) −2228.85 + 3860.49i −0.281771 + 0.488041i −0.971821 0.235720i \(-0.924255\pi\)
0.690050 + 0.723762i \(0.257588\pi\)
\(398\) 0 0
\(399\) −175.059 + 3758.01i −0.0219646 + 0.471518i
\(400\) 0 0
\(401\) 6656.90 11530.1i 0.829001 1.43587i −0.0698209 0.997560i \(-0.522243\pi\)
0.898822 0.438313i \(-0.144424\pi\)
\(402\) 0 0
\(403\) 713.351 + 1235.56i 0.0881750 + 0.152724i
\(404\) 0 0
\(405\) 26018.1 3.19222
\(406\) 0 0
\(407\) −3675.32 −0.447614
\(408\) 0 0
\(409\) 2046.12 + 3543.98i 0.247369 + 0.428456i 0.962795 0.270233i \(-0.0871007\pi\)
−0.715426 + 0.698688i \(0.753767\pi\)
\(410\) 0 0
\(411\) 1934.70 3351.00i 0.232194 0.402172i
\(412\) 0 0
\(413\) 13305.9 6877.37i 1.58533 0.819402i
\(414\) 0 0
\(415\) −8166.16 + 14144.2i −0.965931 + 1.67304i
\(416\) 0 0
\(417\) −8647.02 14977.1i −1.01546 1.75883i
\(418\) 0 0
\(419\) −8297.69 −0.967467 −0.483733 0.875215i \(-0.660720\pi\)
−0.483733 + 0.875215i \(0.660720\pi\)
\(420\) 0 0
\(421\) −14729.2 −1.70512 −0.852561 0.522627i \(-0.824952\pi\)
−0.852561 + 0.522627i \(0.824952\pi\)
\(422\) 0 0
\(423\) −8628.01 14944.2i −0.991746 1.71775i
\(424\) 0 0
\(425\) −4734.50 + 8200.40i −0.540370 + 0.935948i
\(426\) 0 0
\(427\) 10192.7 + 6535.31i 1.15517 + 0.740670i
\(428\) 0 0
\(429\) −2219.91 + 3845.00i −0.249833 + 0.432723i
\(430\) 0 0
\(431\) −2470.26 4278.61i −0.276074 0.478175i 0.694331 0.719656i \(-0.255700\pi\)
−0.970406 + 0.241481i \(0.922367\pi\)
\(432\) 0 0
\(433\) −8291.22 −0.920209 −0.460105 0.887865i \(-0.652188\pi\)
−0.460105 + 0.887865i \(0.652188\pi\)
\(434\) 0 0
\(435\) −13729.0 −1.51323
\(436\) 0 0
\(437\) 1088.45 + 1885.25i 0.119148 + 0.206370i
\(438\) 0 0
\(439\) −4048.86 + 7012.82i −0.440185 + 0.762423i −0.997703 0.0677419i \(-0.978421\pi\)
0.557518 + 0.830165i \(0.311754\pi\)
\(440\) 0 0
\(441\) 12709.0 17926.9i 1.37232 1.93575i
\(442\) 0 0
\(443\) −3229.58 + 5593.79i −0.346370 + 0.599930i −0.985602 0.169084i \(-0.945919\pi\)
0.639232 + 0.769014i \(0.279252\pi\)
\(444\) 0 0
\(445\) −1183.87 2050.53i −0.126114 0.218437i
\(446\) 0 0
\(447\) 27603.5 2.92080
\(448\) 0 0
\(449\) 4951.16 0.520401 0.260200 0.965555i \(-0.416211\pi\)
0.260200 + 0.965555i \(0.416211\pi\)
\(450\) 0 0
\(451\) 1106.92 + 1917.24i 0.115572 + 0.200176i
\(452\) 0 0
\(453\) −5913.09 + 10241.8i −0.613292 + 1.06225i
\(454\) 0 0
\(455\) 5260.44 + 3372.88i 0.542007 + 0.347523i
\(456\) 0 0
\(457\) −7908.74 + 13698.3i −0.809530 + 1.40215i 0.103660 + 0.994613i \(0.466945\pi\)
−0.913190 + 0.407534i \(0.866389\pi\)
\(458\) 0 0
\(459\) −13404.5 23217.3i −1.36311 2.36098i
\(460\) 0 0
\(461\) −8584.25 −0.867263 −0.433632 0.901090i \(-0.642768\pi\)
−0.433632 + 0.901090i \(0.642768\pi\)
\(462\) 0 0
\(463\) −15304.5 −1.53620 −0.768101 0.640329i \(-0.778798\pi\)
−0.768101 + 0.640329i \(0.778798\pi\)
\(464\) 0 0
\(465\) −5042.62 8734.07i −0.502894 0.871038i
\(466\) 0 0
\(467\) 4270.87 7397.37i 0.423196 0.732996i −0.573054 0.819517i \(-0.694242\pi\)
0.996250 + 0.0865210i \(0.0275750\pi\)
\(468\) 0 0
\(469\) 7796.20 4029.60i 0.767580 0.396737i
\(470\) 0 0
\(471\) −8509.26 + 14738.5i −0.832454 + 1.44185i
\(472\) 0 0
\(473\) 3426.88 + 5935.54i 0.333125 + 0.576990i
\(474\) 0 0
\(475\) 2659.43 0.256890
\(476\) 0 0
\(477\) −19787.6 −1.89939
\(478\) 0 0
\(479\) −1149.11 1990.31i −0.109612 0.189853i 0.806001 0.591914i \(-0.201627\pi\)
−0.915613 + 0.402061i \(0.868294\pi\)
\(480\) 0 0
\(481\) 1799.13 3116.18i 0.170547 0.295396i
\(482\) 0 0
\(483\) 841.044 18054.8i 0.0792315 1.70087i
\(484\) 0 0
\(485\) 14747.9 25544.1i 1.38076 2.39154i
\(486\) 0 0
\(487\) −5509.61 9542.92i −0.512657 0.887948i −0.999892 0.0146775i \(-0.995328\pi\)
0.487235 0.873271i \(-0.338005\pi\)
\(488\) 0 0
\(489\) 12208.8 1.12904
\(490\) 0 0
\(491\) −17105.3 −1.57221 −0.786103 0.618096i \(-0.787904\pi\)
−0.786103 + 0.618096i \(0.787904\pi\)
\(492\) 0 0
\(493\) 3448.52 + 5973.02i 0.315038 + 0.545662i
\(494\) 0 0
\(495\) 11039.8 19121.5i 1.00243 1.73626i
\(496\) 0 0
\(497\) −136.162 + 2923.00i −0.0122891 + 0.263812i
\(498\) 0 0
\(499\) −646.501 + 1119.77i −0.0579987 + 0.100457i −0.893567 0.448930i \(-0.851805\pi\)
0.835568 + 0.549387i \(0.185139\pi\)
\(500\) 0 0
\(501\) 4634.33 + 8026.90i 0.413267 + 0.715799i
\(502\) 0 0
\(503\) −258.772 −0.0229385 −0.0114692 0.999934i \(-0.503651\pi\)
−0.0114692 + 0.999934i \(0.503651\pi\)
\(504\) 0 0
\(505\) −8450.88 −0.744672
\(506\) 0 0
\(507\) 8309.50 + 14392.5i 0.727885 + 1.26073i
\(508\) 0 0
\(509\) 8132.50 14085.9i 0.708186 1.22661i −0.257343 0.966320i \(-0.582847\pi\)
0.965529 0.260294i \(-0.0838195\pi\)
\(510\) 0 0
\(511\) 4443.45 2296.67i 0.384671 0.198823i
\(512\) 0 0
\(513\) −3764.74 + 6520.72i −0.324010 + 0.561202i
\(514\) 0 0
\(515\) 10431.1 + 18067.3i 0.892527 + 1.54590i
\(516\) 0 0
\(517\) −5871.56 −0.499479
\(518\) 0 0
\(519\) −5046.72 −0.426833
\(520\) 0 0
\(521\) 8322.36 + 14414.8i 0.699826 + 1.21213i 0.968526 + 0.248911i \(0.0800725\pi\)
−0.268700 + 0.963224i \(0.586594\pi\)
\(522\) 0 0
\(523\) −5137.18 + 8897.85i −0.429509 + 0.743931i −0.996830 0.0795658i \(-0.974647\pi\)
0.567321 + 0.823497i \(0.307980\pi\)
\(524\) 0 0
\(525\) −18588.0 11918.2i −1.54523 0.990769i
\(526\) 0 0
\(527\) −2533.26 + 4387.74i −0.209394 + 0.362681i
\(528\) 0 0
\(529\) 854.204 + 1479.52i 0.0702066 + 0.121601i
\(530\) 0 0
\(531\) 51813.5 4.23449
\(532\) 0 0
\(533\) −2167.42 −0.176138
\(534\) 0 0
\(535\) 5482.34 + 9495.69i 0.443032 + 0.767354i
\(536\) 0 0
\(537\) 710.946 1231.39i 0.0571314 0.0989546i
\(538\) 0 0
\(539\) −3120.43 6794.96i −0.249362 0.543005i
\(540\) 0 0
\(541\) 8718.16 15100.3i 0.692833 1.20002i −0.278072 0.960560i \(-0.589696\pi\)
0.970906 0.239462i \(-0.0769711\pi\)
\(542\) 0 0
\(543\) 17292.5 + 29951.6i 1.36666 + 2.36712i
\(544\) 0 0
\(545\) 31081.1 2.44288
\(546\) 0 0
\(547\) −3708.40 −0.289871 −0.144936 0.989441i \(-0.546297\pi\)
−0.144936 + 0.989441i \(0.546297\pi\)
\(548\) 0 0
\(549\) 20942.3 + 36273.1i 1.62804 + 2.81985i
\(550\) 0 0
\(551\) 968.538 1677.56i 0.0748840 0.129703i
\(552\) 0 0
\(553\) −5074.12 3253.41i −0.390187 0.250179i
\(554\) 0 0
\(555\) −12717.9 + 22028.0i −0.972691 + 1.68475i
\(556\) 0 0
\(557\) 9960.80 + 17252.6i 0.757725 + 1.31242i 0.944008 + 0.329922i \(0.107022\pi\)
−0.186284 + 0.982496i \(0.559644\pi\)
\(558\) 0 0
\(559\) −6710.05 −0.507701
\(560\) 0 0
\(561\) −15766.8 −1.18658
\(562\) 0 0
\(563\) 3426.37 + 5934.65i 0.256491 + 0.444255i 0.965299 0.261146i \(-0.0841004\pi\)
−0.708809 + 0.705401i \(0.750767\pi\)
\(564\) 0 0
\(565\) −17130.5 + 29671.0i −1.27555 + 2.20932i
\(566\) 0 0
\(567\) 27076.6 13995.0i 2.00548 1.03657i
\(568\) 0 0
\(569\) 2736.52 4739.79i 0.201618 0.349213i −0.747432 0.664339i \(-0.768713\pi\)
0.949050 + 0.315125i \(0.102047\pi\)
\(570\) 0 0
\(571\) −10803.5 18712.2i −0.791792 1.37142i −0.924857 0.380316i \(-0.875815\pi\)
0.133065 0.991107i \(-0.457518\pi\)
\(572\) 0 0
\(573\) −30390.2 −2.21565
\(574\) 0 0
\(575\) −12776.8 −0.926662
\(576\) 0 0
\(577\) −580.448 1005.37i −0.0418794 0.0725372i 0.844326 0.535830i \(-0.180001\pi\)
−0.886205 + 0.463293i \(0.846668\pi\)
\(578\) 0 0
\(579\) 21937.3 37996.6i 1.57458 2.72726i
\(580\) 0 0
\(581\) −890.300 + 19112.2i −0.0635729 + 1.36473i
\(582\) 0 0
\(583\) −3366.47 + 5830.90i −0.239151 + 0.414222i
\(584\) 0 0
\(585\) 10808.3 + 18720.5i 0.763877 + 1.32307i
\(586\) 0 0
\(587\) 6275.52 0.441258 0.220629 0.975358i \(-0.429189\pi\)
0.220629 + 0.975358i \(0.429189\pi\)
\(588\) 0 0
\(589\) 1422.96 0.0995453
\(590\) 0 0
\(591\) −18502.9 32047.9i −1.28783 2.23058i
\(592\) 0 0
\(593\) −7013.59 + 12147.9i −0.485689 + 0.841238i −0.999865 0.0164467i \(-0.994765\pi\)
0.514176 + 0.857685i \(0.328098\pi\)
\(594\) 0 0
\(595\) −1032.61 + 22167.1i −0.0711474 + 1.52733i
\(596\) 0 0
\(597\) −9428.96 + 16331.4i −0.646401 + 1.11960i
\(598\) 0 0
\(599\) −11413.5 19768.7i −0.778535 1.34846i −0.932786 0.360431i \(-0.882630\pi\)
0.154251 0.988032i \(-0.450704\pi\)
\(600\) 0 0
\(601\) −14056.5 −0.954036 −0.477018 0.878894i \(-0.658282\pi\)
−0.477018 + 0.878894i \(0.658282\pi\)
\(602\) 0 0
\(603\) 30358.6 2.05025
\(604\) 0 0
\(605\) 6764.71 + 11716.8i 0.454586 + 0.787366i
\(606\) 0 0
\(607\) −10251.2 + 17755.5i −0.685472 + 1.18727i 0.287816 + 0.957686i \(0.407071\pi\)
−0.973288 + 0.229587i \(0.926262\pi\)
\(608\) 0 0
\(609\) −14287.6 + 7384.76i −0.950674 + 0.491372i
\(610\) 0 0
\(611\) 2874.22 4978.29i 0.190308 0.329624i
\(612\) 0 0
\(613\) −6248.46 10822.7i −0.411702 0.713088i 0.583374 0.812203i \(-0.301732\pi\)
−0.995076 + 0.0991154i \(0.968399\pi\)
\(614\) 0 0
\(615\) 15321.3 1.00458
\(616\) 0 0
\(617\) 3715.94 0.242460 0.121230 0.992624i \(-0.461316\pi\)
0.121230 + 0.992624i \(0.461316\pi\)
\(618\) 0 0
\(619\) −748.648 1296.70i −0.0486118 0.0841981i 0.840696 0.541508i \(-0.182146\pi\)
−0.889307 + 0.457310i \(0.848813\pi\)
\(620\) 0 0
\(621\) 18087.1 31327.8i 1.16878 2.02439i
\(622\) 0 0
\(623\) −2335.00 1497.15i −0.150160 0.0962795i
\(624\) 0 0
\(625\) 7816.52 13538.6i 0.500257 0.866471i
\(626\) 0 0
\(627\) 2214.09 + 3834.92i 0.141025 + 0.244262i
\(628\) 0 0
\(629\) 12778.2 0.810014
\(630\) 0 0
\(631\) 27717.6 1.74869 0.874343 0.485309i \(-0.161293\pi\)
0.874343 + 0.485309i \(0.161293\pi\)
\(632\) 0 0
\(633\) 19894.5 + 34458.3i 1.24919 + 2.16366i
\(634\) 0 0
\(635\) −11411.2 + 19764.7i −0.713131 + 1.23518i
\(636\) 0 0
\(637\) 7288.71 + 680.534i 0.453358 + 0.0423293i
\(638\) 0 0
\(639\) −5061.22 + 8766.28i −0.313331 + 0.542706i
\(640\) 0 0
\(641\) −5939.27 10287.1i −0.365971 0.633880i 0.622961 0.782253i \(-0.285930\pi\)
−0.988931 + 0.148373i \(0.952596\pi\)
\(642\) 0 0
\(643\) −21166.1 −1.29815 −0.649073 0.760726i \(-0.724843\pi\)
−0.649073 + 0.760726i \(0.724843\pi\)
\(644\) 0 0
\(645\) 47432.8 2.89560
\(646\) 0 0
\(647\) 8956.31 + 15512.8i 0.544218 + 0.942613i 0.998656 + 0.0518345i \(0.0165068\pi\)
−0.454438 + 0.890778i \(0.650160\pi\)
\(648\) 0 0
\(649\) 8815.07 15268.1i 0.533161 0.923462i
\(650\) 0 0
\(651\) −9945.78 6377.01i −0.598780 0.383924i
\(652\) 0 0
\(653\) −2303.47 + 3989.73i −0.138043 + 0.239097i −0.926756 0.375665i \(-0.877414\pi\)
0.788713 + 0.614761i \(0.210748\pi\)
\(654\) 0 0
\(655\) 16799.7 + 29097.9i 1.00216 + 1.73580i
\(656\) 0 0
\(657\) 17302.9 1.02748
\(658\) 0 0
\(659\) −6753.57 −0.399213 −0.199607 0.979876i \(-0.563966\pi\)
−0.199607 + 0.979876i \(0.563966\pi\)
\(660\) 0 0
\(661\) −15944.4 27616.5i −0.938223 1.62505i −0.768783 0.639510i \(-0.779137\pi\)
−0.169440 0.985541i \(-0.554196\pi\)
\(662\) 0 0
\(663\) 7718.07 13368.1i 0.452104 0.783067i
\(664\) 0 0
\(665\) 5536.67 2861.72i 0.322861 0.166876i
\(666\) 0 0
\(667\) −4653.20 + 8059.58i −0.270124 + 0.467868i
\(668\) 0 0
\(669\) 7612.49 + 13185.2i 0.439934 + 0.761988i
\(670\) 0 0
\(671\) 14251.7 0.819940
\(672\) 0 0
\(673\) 4332.88 0.248173 0.124086 0.992271i \(-0.460400\pi\)
0.124086 + 0.992271i \(0.460400\pi\)
\(674\) 0 0
\(675\) −22096.3 38271.9i −1.25998 2.18235i
\(676\) 0 0
\(677\) −742.064 + 1285.29i −0.0421268 + 0.0729658i −0.886320 0.463073i \(-0.846747\pi\)
0.844193 + 0.536039i \(0.180080\pi\)
\(678\) 0 0
\(679\) 1607.86 34516.1i 0.0908747 1.95082i
\(680\) 0 0
\(681\) −4092.99 + 7089.26i −0.230314 + 0.398915i
\(682\) 0 0
\(683\) −1853.16 3209.76i −0.103820 0.179822i 0.809435 0.587209i \(-0.199773\pi\)
−0.913255 + 0.407387i \(0.866440\pi\)
\(684\) 0 0
\(685\) −6410.29 −0.357554
\(686\) 0 0
\(687\) −749.001 −0.0415956
\(688\) 0 0
\(689\) −3295.88 5708.63i −0.182240 0.315648i
\(690\) 0 0
\(691\) −12901.6 + 22346.3i −0.710276 + 1.23023i 0.254477 + 0.967079i \(0.418097\pi\)
−0.964753 + 0.263156i \(0.915237\pi\)
\(692\) 0 0
\(693\) 1203.59 25837.7i 0.0659750 1.41629i
\(694\) 0 0
\(695\) −14325.2 + 24812.0i −0.781850 + 1.35420i
\(696\) 0 0
\(697\) −3848.49 6665.78i −0.209142 0.362244i
\(698\) 0 0
\(699\) 6296.06 0.340685
\(700\) 0 0
\(701\) 16440.9 0.885827 0.442914 0.896564i \(-0.353945\pi\)
0.442914 + 0.896564i \(0.353945\pi\)
\(702\) 0 0
\(703\) −1794.41 3108.01i −0.0962695 0.166744i
\(704\) 0 0
\(705\) −20317.6 + 35191.1i −1.08540 + 1.87996i
\(706\) 0 0
\(707\) −8794.69 + 4545.68i −0.467834 + 0.241808i
\(708\) 0 0
\(709\) 8310.79 14394.7i 0.440223 0.762489i −0.557482 0.830189i \(-0.688233\pi\)
0.997706 + 0.0676995i \(0.0215659\pi\)
\(710\) 0 0
\(711\) −10425.5 18057.5i −0.549910 0.952473i
\(712\) 0 0
\(713\) −6836.42 −0.359083
\(714\) 0 0
\(715\) 7355.29 0.384717
\(716\) 0 0
\(717\) 13741.2 + 23800.4i 0.715723 + 1.23967i
\(718\) 0 0
\(719\) −8713.36 + 15092.0i −0.451952 + 0.782804i −0.998507 0.0546192i \(-0.982606\pi\)
0.546555 + 0.837423i \(0.315939\pi\)
\(720\) 0 0
\(721\) 20573.8 + 13191.5i 1.06270 + 0.681381i
\(722\) 0 0
\(723\) 11139.0 19293.3i 0.572980 0.992430i
\(724\) 0 0
\(725\) 5684.62 + 9846.06i 0.291202 + 0.504377i
\(726\) 0 0
\(727\) −19950.2 −1.01776 −0.508879 0.860838i \(-0.669940\pi\)
−0.508879 + 0.860838i \(0.669940\pi\)
\(728\) 0 0
\(729\) 14297.4 0.726385
\(730\) 0 0
\(731\) −11914.4 20636.4i −0.602832 1.04414i
\(732\) 0 0
\(733\) −6353.15 + 11004.0i −0.320135 + 0.554490i −0.980516 0.196441i \(-0.937062\pi\)
0.660381 + 0.750931i \(0.270395\pi\)
\(734\) 0 0
\(735\) −51523.2 4810.64i −2.58566 0.241419i
\(736\) 0 0
\(737\) 5164.94 8945.93i 0.258145 0.447120i
\(738\) 0 0
\(739\) −7756.39 13434.5i −0.386094 0.668734i 0.605826 0.795597i \(-0.292843\pi\)
−0.991920 + 0.126863i \(0.959509\pi\)
\(740\) 0 0
\(741\) −4335.33 −0.214929
\(742\) 0 0
\(743\) 1559.42 0.0769981 0.0384991 0.999259i \(-0.487742\pi\)
0.0384991 + 0.999259i \(0.487742\pi\)
\(744\) 0 0
\(745\) −22864.8 39603.1i −1.12443 1.94758i
\(746\) 0 0
\(747\) −33093.0 + 57318.7i −1.62090 + 2.80747i
\(748\) 0 0
\(749\) 10813.1 + 6933.09i 0.527504 + 0.338224i
\(750\) 0 0
\(751\) 5173.64 8961.01i 0.251383 0.435408i −0.712524 0.701648i \(-0.752448\pi\)
0.963907 + 0.266240i \(0.0857812\pi\)
\(752\) 0 0
\(753\) −6617.08 11461.1i −0.320239 0.554670i
\(754\) 0 0
\(755\) 19592.0 0.944406
\(756\) 0 0
\(757\) −40281.7 −1.93403 −0.967017 0.254711i \(-0.918020\pi\)
−0.967017 + 0.254711i \(0.918020\pi\)
\(758\) 0 0
\(759\) −10637.3 18424.3i −0.508708 0.881108i
\(760\) 0 0
\(761\) −4288.89 + 7428.57i −0.204300 + 0.353858i −0.949909 0.312525i \(-0.898825\pi\)
0.745610 + 0.666383i \(0.232158\pi\)
\(762\) 0 0
\(763\) 32345.6 16718.3i 1.53472 0.793243i
\(764\) 0 0
\(765\) −38382.6 + 66480.6i −1.81402 + 3.14197i
\(766\) 0 0
\(767\) 8630.22 + 14948.0i 0.406283 + 0.703703i
\(768\) 0 0
\(769\) −10747.8 −0.504001 −0.252000 0.967727i \(-0.581088\pi\)
−0.252000 + 0.967727i \(0.581088\pi\)
\(770\) 0 0
\(771\) −57766.6 −2.69833
\(772\) 0 0
\(773\) −5894.46 10209.5i −0.274268 0.475046i 0.695682 0.718350i \(-0.255102\pi\)
−0.969950 + 0.243304i \(0.921769\pi\)
\(774\) 0 0
\(775\) −4175.89 + 7232.85i −0.193551 + 0.335241i
\(776\) 0 0
\(777\) −1386.54 + 29765.0i −0.0640178 + 1.37428i
\(778\) 0 0
\(779\) −1080.87 + 1872.12i −0.0497127 + 0.0861050i
\(780\) 0 0
\(781\) 1722.14 + 2982.83i 0.0789025 + 0.136663i
\(782\) 0 0
\(783\) −32189.1 −1.46915
\(784\) 0 0
\(785\) 28194.0 1.28189
\(786\) 0 0
\(787\) −5656.26 9796.93i −0.256193 0.443739i 0.709026 0.705182i \(-0.249135\pi\)
−0.965219 + 0.261443i \(0.915802\pi\)
\(788\) 0 0
\(789\) 4787.74 8292.61i 0.216031 0.374176i
\(790\) 0 0
\(791\) −1867.62 + 40092.5i −0.0839507 + 1.80218i
\(792\) 0 0
\(793\) −6976.42 + 12083.5i −0.312408 + 0.541107i
\(794\) 0 0
\(795\) 23298.3 + 40353.9i 1.03938 + 1.80026i
\(796\) 0 0
\(797\) 32275.4 1.43444 0.717222 0.696845i \(-0.245413\pi\)
0.717222 + 0.696845i \(0.245413\pi\)
\(798\) 0 0
\(799\) 20413.9 0.903871
\(800\) 0 0
\(801\) −4797.59 8309.67i −0.211629 0.366551i
\(802\) 0 0
\(803\) 2943.76 5098.74i 0.129369 0.224073i
\(804\) 0 0
\(805\) −26600.1 + 13748.7i −1.16464 + 0.601961i
\(806\) 0 0
\(807\) 16757.6 29025.1i 0.730975 1.26609i
\(808\) 0 0
\(809\) 5155.40 + 8929.42i 0.224047 + 0.388061i 0.956033 0.293258i \(-0.0947396\pi\)
−0.731986 + 0.681320i \(0.761406\pi\)
\(810\) 0 0
\(811\) −13890.7 −0.601439 −0.300720 0.953713i \(-0.597227\pi\)
−0.300720 + 0.953713i \(0.597227\pi\)
\(812\) 0 0
\(813\) 371.382 0.0160208
\(814\) 0 0
\(815\) −10113.0 17516.2i −0.434653 0.752840i
\(816\) 0 0
\(817\) −3346.23 + 5795.85i −0.143292 + 0.248190i
\(818\) 0 0
\(819\) 21317.7 + 13668.4i 0.909524 + 0.583166i
\(820\) 0 0
\(821\) −15805.4 + 27375.7i −0.671878 + 1.16373i 0.305493 + 0.952194i \(0.401179\pi\)
−0.977371 + 0.211532i \(0.932155\pi\)
\(822\) 0 0
\(823\) −5754.38 9966.87i −0.243724 0.422143i 0.718048 0.695994i \(-0.245036\pi\)
−0.961772 + 0.273851i \(0.911702\pi\)
\(824\) 0 0
\(825\) −25990.3 −1.09681
\(826\) 0 0
\(827\) 42336.9 1.78017 0.890083 0.455798i \(-0.150646\pi\)
0.890083 + 0.455798i \(0.150646\pi\)
\(828\) 0 0
\(829\) −17964.3 31115.1i −0.752625 1.30358i −0.946546 0.322567i \(-0.895454\pi\)
0.193922 0.981017i \(-0.437879\pi\)
\(830\) 0 0
\(831\) −934.965 + 1619.41i −0.0390296 + 0.0676012i
\(832\) 0 0
\(833\) 10848.9 + 23624.3i 0.451252 + 0.982635i
\(834\) 0 0
\(835\) 7677.53 13297.9i 0.318194 0.551128i
\(836\) 0 0
\(837\) −11822.9 20477.9i −0.488244 0.845664i
\(838\) 0 0
\(839\) 1043.87 0.0429541 0.0214771 0.999769i \(-0.493163\pi\)
0.0214771 + 0.999769i \(0.493163\pi\)
\(840\) 0 0
\(841\) −16107.9 −0.660456
\(842\) 0 0
\(843\) −3862.88 6690.70i −0.157823 0.273357i
\(844\) 0 0
\(845\) 13766.0 23843.5i 0.560434 0.970700i
\(846\) 0 0
\(847\) 13342.3 + 8554.81i 0.541261 + 0.347044i
\(848\) 0 0
\(849\) −18124.9 + 31393.2i −0.732678 + 1.26904i
\(850\) 0 0
\(851\) 8620.99 + 14932.0i 0.347266 + 0.601483i
\(852\) 0 0
\(853\) 23453.0 0.941403 0.470702 0.882292i \(-0.344001\pi\)
0.470702 + 0.882292i \(0.344001\pi\)
\(854\) 0 0
\(855\) 21560.0 0.862380
\(856\) 0 0
\(857\) −19931.7 34522.8i −0.794464 1.37605i −0.923179 0.384370i \(-0.874419\pi\)
0.128716 0.991682i \(-0.458915\pi\)
\(858\) 0 0
\(859\) −3953.97 + 6848.47i −0.157052 + 0.272022i −0.933804 0.357784i \(-0.883532\pi\)
0.776752 + 0.629806i \(0.216866\pi\)
\(860\) 0 0
\(861\) 15944.6 8241.25i 0.631117 0.326203i
\(862\) 0 0
\(863\) −3384.84 + 5862.71i −0.133512 + 0.231250i −0.925028 0.379898i \(-0.875959\pi\)
0.791516 + 0.611149i \(0.209292\pi\)
\(864\) 0 0
\(865\) 4180.36 + 7240.60i 0.164320 + 0.284610i
\(866\) 0 0
\(867\) 7932.84 0.310742
\(868\) 0 0
\(869\) −7094.78 −0.276955
\(870\) 0 0
\(871\) 5056.63 + 8758.34i 0.196713 + 0.340718i
\(872\) 0 0
\(873\) 59765.1 103516.i 2.31700 4.01316i
\(874\) 0 0
\(875\) 0.875924 18.8036i 3.38419e−5 0.000726488i
\(876\) 0 0
\(877\) 8658.83 14997.5i 0.333396 0.577458i −0.649780 0.760123i \(-0.725139\pi\)
0.983175 + 0.182664i \(0.0584722\pi\)
\(878\) 0 0
\(879\) 14998.0 + 25977.3i 0.575505 + 0.996804i
\(880\) 0 0
\(881\) 33759.7 1.29103 0.645513 0.763750i \(-0.276644\pi\)
0.645513 + 0.763750i \(0.276644\pi\)
\(882\) 0 0
\(883\) 20233.7 0.771142 0.385571 0.922678i \(-0.374004\pi\)
0.385571 + 0.922678i \(0.374004\pi\)
\(884\) 0 0
\(885\) −61006.3 105666.i −2.31718 4.01347i
\(886\) 0 0
\(887\) 13903.3 24081.3i 0.526300 0.911579i −0.473230 0.880939i \(-0.656912\pi\)
0.999530 0.0306400i \(-0.00975453\pi\)
\(888\) 0 0
\(889\) −1244.08 + 26706.8i −0.0469348 + 1.00756i
\(890\) 0 0
\(891\) 17938.1 31069.6i 0.674464 1.16821i
\(892\) 0 0
\(893\) −2866.69 4965.25i −0.107424 0.186065i
\(894\) 0 0
\(895\) −2355.60 −0.0879765
\(896\) 0 0
\(897\) 20828.5 0.775298
\(898\) 0 0
\(899\) 3041.64 + 5268.27i 0.112841 + 0.195447i
\(900\) 0 0
\(901\) 11704.4 20272.6i 0.432774 0.749587i
\(902\) 0 0
\(903\) 49362.5 25513.8i 1.81914 0.940252i
\(904\) 0 0
\(905\) 28647.9 49619.7i 1.05225 1.82256i
\(906\) 0 0
\(907\) −9596.46 16621.6i −0.351318 0.608500i 0.635163 0.772378i \(-0.280933\pi\)
−0.986481 + 0.163878i \(0.947600\pi\)
\(908\) 0 0
\(909\) −34246.8 −1.24961
\(910\) 0 0
\(911\) −39131.9 −1.42316 −0.711579 0.702607i \(-0.752019\pi\)
−0.711579 + 0.702607i \(0.752019\pi\)
\(912\) 0 0
\(913\) 11260.3 + 19503.4i 0.408171 + 0.706973i
\(914\) 0 0
\(915\) 49315.7 85417.3i 1.78178 3.08613i
\(916\) 0 0
\(917\) 33134.7 + 21245.2i 1.19325 + 0.765082i
\(918\) 0 0
\(919\) 25239.1 43715.4i 0.905942 1.56914i 0.0862946 0.996270i \(-0.472497\pi\)
0.819648 0.572868i \(-0.194169\pi\)
\(920\) 0 0
\(921\) −36866.7 63855.1i −1.31900 2.28458i
\(922\) 0 0
\(923\) −3372.05 −0.120252
\(924\) 0 0
\(925\) 21063.8 0.748729
\(926\) 0 0
\(927\) 42271.7 + 73216.8i 1.49772 + 2.59413i
\(928\) 0 0
\(929\) −9546.23 + 16534.5i −0.337138 + 0.583941i −0.983893 0.178757i \(-0.942792\pi\)
0.646755 + 0.762698i \(0.276126\pi\)
\(930\) 0 0
\(931\) 4222.62 5956.29i 0.148647 0.209677i
\(932\) 0 0
\(933\) 7051.74 12214.0i 0.247442 0.428583i
\(934\) 0 0
\(935\) 13060.1 + 22620.8i 0.456803 + 0.791207i
\(936\) 0 0
\(937\) −19922.3 −0.694592 −0.347296 0.937756i \(-0.612900\pi\)
−0.347296 + 0.937756i \(0.612900\pi\)
\(938\) 0 0
\(939\) −65098.9 −2.26243
\(940\) 0 0
\(941\) 7662.52 + 13271.9i 0.265453 + 0.459778i 0.967682 0.252173i \(-0.0811452\pi\)
−0.702229 + 0.711951i \(0.747812\pi\)
\(942\) 0 0
\(943\) 5192.89 8994.34i 0.179325 0.310600i
\(944\) 0 0
\(945\) −87185.5 55901.4i −3.00121 1.92431i
\(946\) 0 0
\(947\) 1130.28 1957.70i 0.0387848 0.0671772i −0.845981 0.533212i \(-0.820985\pi\)
0.884766 + 0.466035i \(0.154318\pi\)
\(948\) 0 0
\(949\) 2882.03 + 4991.82i 0.0985824 + 0.170750i
\(950\) 0 0
\(951\) 7035.22 0.239887
\(952\) 0 0
\(953\) 24905.1 0.846543 0.423272 0.906003i \(-0.360882\pi\)
0.423272 + 0.906003i \(0.360882\pi\)
\(954\) 0 0
\(955\) 25173.2 + 43601.3i 0.852969 + 1.47739i
\(956\) 0 0
\(957\) −9465.41 + 16394.6i −0.319721 + 0.553774i
\(958\) 0 0
\(959\) −6671.09 + 3448.06i −0.224630 + 0.116104i
\(960\) 0 0
\(961\) 12661.1 21929.7i 0.424999 0.736119i
\(962\) 0 0
\(963\) 22216.9 + 38480.8i 0.743437 + 1.28767i
\(964\) 0 0
\(965\) −72685.6 −2.42470
\(966\) 0 0
\(967\) −28438.6 −0.945734 −0.472867 0.881134i \(-0.656781\pi\)
−0.472867 + 0.881134i \(0.656781\pi\)
\(968\) 0 0
\(969\) −7697.84 13333.1i −0.255202 0.442022i
\(970\) 0 0
\(971\) −7640.18 + 13233.2i −0.252508 + 0.437356i −0.964216 0.265119i \(-0.914589\pi\)
0.711708 + 0.702476i \(0.247922\pi\)
\(972\) 0 0
\(973\) −1561.78 + 33526.9i −0.0514576 + 1.10465i
\(974\) 0 0
\(975\) 12722.6 22036.3i 0.417898 0.723821i
\(976\) 0 0
\(977\) 15541.7 + 26919.1i 0.508930 + 0.881493i 0.999947 + 0.0103424i \(0.00329213\pi\)
−0.491017 + 0.871150i \(0.663375\pi\)
\(978\) 0 0
\(979\) −3264.87 −0.106584
\(980\) 0 0
\(981\) 125955. 4.09931
\(982\) 0 0
\(983\) 4753.07 + 8232.56i 0.154221 + 0.267119i 0.932775 0.360459i \(-0.117380\pi\)
−0.778554 + 0.627578i \(0.784047\pi\)
\(984\) 0 0
\(985\) −30653.1 + 53092.6i −0.991561 + 1.71743i
\(986\) 0 0
\(987\) −2215.09 + 47551.6i −0.0714357 + 1.53352i
\(988\) 0 0
\(989\) 16076.5 27845.3i 0.516889 0.895277i
\(990\) 0 0
\(991\) −20656.6 35778.2i −0.662137 1.14686i −0.980053 0.198736i \(-0.936316\pi\)
0.317916 0.948119i \(-0.397017\pi\)
\(992\) 0 0
\(993\) −34967.8 −1.11749
\(994\) 0 0
\(995\) 31241.2 0.995391
\(996\) 0 0
\(997\) 14889.5 + 25789.3i 0.472973 + 0.819213i 0.999521 0.0309318i \(-0.00984748\pi\)
−0.526549 + 0.850145i \(0.676514\pi\)
\(998\) 0 0
\(999\) −29818.4 + 51646.9i −0.944355 + 1.63567i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.i.j.65.1 6
4.3 odd 2 448.4.i.m.65.3 6
7.4 even 3 inner 448.4.i.j.193.1 6
8.3 odd 2 112.4.i.e.65.1 6
8.5 even 2 56.4.i.b.9.3 6
24.5 odd 2 504.4.s.h.289.1 6
28.11 odd 6 448.4.i.m.193.3 6
56.5 odd 6 392.4.a.l.1.3 3
56.11 odd 6 112.4.i.e.81.1 6
56.13 odd 2 392.4.i.m.177.1 6
56.19 even 6 784.4.a.bb.1.1 3
56.37 even 6 392.4.a.i.1.1 3
56.45 odd 6 392.4.i.m.361.1 6
56.51 odd 6 784.4.a.be.1.3 3
56.53 even 6 56.4.i.b.25.3 yes 6
168.53 odd 6 504.4.s.h.361.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.4.i.b.9.3 6 8.5 even 2
56.4.i.b.25.3 yes 6 56.53 even 6
112.4.i.e.65.1 6 8.3 odd 2
112.4.i.e.81.1 6 56.11 odd 6
392.4.a.i.1.1 3 56.37 even 6
392.4.a.l.1.3 3 56.5 odd 6
392.4.i.m.177.1 6 56.13 odd 2
392.4.i.m.361.1 6 56.45 odd 6
448.4.i.j.65.1 6 1.1 even 1 trivial
448.4.i.j.193.1 6 7.4 even 3 inner
448.4.i.m.65.3 6 4.3 odd 2
448.4.i.m.193.3 6 28.11 odd 6
504.4.s.h.289.1 6 24.5 odd 2
504.4.s.h.361.1 6 168.53 odd 6
784.4.a.bb.1.1 3 56.19 even 6
784.4.a.be.1.3 3 56.51 odd 6