Properties

Label 784.4.a.be.1.3
Level $784$
Weight $4$
Character 784.1
Self dual yes
Analytic conductor $46.257$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,4,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.2574974445\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1929.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 10x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.27144\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.54289 q^{3} -15.8094 q^{5} +64.0667 q^{9} -21.7994 q^{11} +21.3423 q^{13} -150.867 q^{15} +75.7910 q^{17} +21.2864 q^{19} +102.267 q^{23} +124.936 q^{25} +353.723 q^{27} +91.0008 q^{29} -66.8486 q^{31} -208.029 q^{33} -168.597 q^{37} +203.667 q^{39} +101.555 q^{41} +314.402 q^{43} -1012.85 q^{45} -269.345 q^{47} +723.265 q^{51} +308.859 q^{53} +344.635 q^{55} +203.133 q^{57} +808.744 q^{59} +653.765 q^{61} -337.408 q^{65} +473.860 q^{67} +975.925 q^{69} -157.998 q^{71} +270.077 q^{73} +1192.25 q^{75} -325.457 q^{79} +1645.74 q^{81} +1033.08 q^{83} -1198.21 q^{85} +868.410 q^{87} +149.769 q^{89} -637.928 q^{93} -336.524 q^{95} -1865.72 q^{97} -1396.62 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 7 q^{3} - 3 q^{5} + 18 q^{9} + 3 q^{11} - 26 q^{13} - 127 q^{15} - 31 q^{17} + 89 q^{19} + 201 q^{23} + 300 q^{25} + 469 q^{27} + 190 q^{29} + 339 q^{31} - 105 q^{33} - 535 q^{37} + 134 q^{39} + 58 q^{41}+ \cdots - 2310 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.54289 1.83653 0.918265 0.395967i \(-0.129591\pi\)
0.918265 + 0.395967i \(0.129591\pi\)
\(4\) 0 0
\(5\) −15.8094 −1.41403 −0.707016 0.707198i \(-0.749959\pi\)
−0.707016 + 0.707198i \(0.749959\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 64.0667 2.37284
\(10\) 0 0
\(11\) −21.7994 −0.597524 −0.298762 0.954328i \(-0.596574\pi\)
−0.298762 + 0.954328i \(0.596574\pi\)
\(12\) 0 0
\(13\) 21.3423 0.455330 0.227665 0.973740i \(-0.426891\pi\)
0.227665 + 0.973740i \(0.426891\pi\)
\(14\) 0 0
\(15\) −150.867 −2.59691
\(16\) 0 0
\(17\) 75.7910 1.08130 0.540648 0.841249i \(-0.318179\pi\)
0.540648 + 0.841249i \(0.318179\pi\)
\(18\) 0 0
\(19\) 21.2864 0.257022 0.128511 0.991708i \(-0.458980\pi\)
0.128511 + 0.991708i \(0.458980\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 102.267 0.927139 0.463570 0.886061i \(-0.346568\pi\)
0.463570 + 0.886061i \(0.346568\pi\)
\(24\) 0 0
\(25\) 124.936 0.999486
\(26\) 0 0
\(27\) 353.723 2.52126
\(28\) 0 0
\(29\) 91.0008 0.582704 0.291352 0.956616i \(-0.405895\pi\)
0.291352 + 0.956616i \(0.405895\pi\)
\(30\) 0 0
\(31\) −66.8486 −0.387302 −0.193651 0.981071i \(-0.562033\pi\)
−0.193651 + 0.981071i \(0.562033\pi\)
\(32\) 0 0
\(33\) −208.029 −1.09737
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −168.597 −0.749114 −0.374557 0.927204i \(-0.622205\pi\)
−0.374557 + 0.927204i \(0.622205\pi\)
\(38\) 0 0
\(39\) 203.667 0.836226
\(40\) 0 0
\(41\) 101.555 0.386836 0.193418 0.981116i \(-0.438043\pi\)
0.193418 + 0.981116i \(0.438043\pi\)
\(42\) 0 0
\(43\) 314.402 1.11502 0.557509 0.830171i \(-0.311757\pi\)
0.557509 + 0.830171i \(0.311757\pi\)
\(44\) 0 0
\(45\) −1012.85 −3.35527
\(46\) 0 0
\(47\) −269.345 −0.835915 −0.417957 0.908467i \(-0.637254\pi\)
−0.417957 + 0.908467i \(0.637254\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 723.265 1.98583
\(52\) 0 0
\(53\) 308.859 0.800473 0.400236 0.916412i \(-0.368928\pi\)
0.400236 + 0.916412i \(0.368928\pi\)
\(54\) 0 0
\(55\) 344.635 0.844918
\(56\) 0 0
\(57\) 203.133 0.472029
\(58\) 0 0
\(59\) 808.744 1.78457 0.892284 0.451475i \(-0.149102\pi\)
0.892284 + 0.451475i \(0.149102\pi\)
\(60\) 0 0
\(61\) 653.765 1.37223 0.686115 0.727493i \(-0.259315\pi\)
0.686115 + 0.727493i \(0.259315\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −337.408 −0.643851
\(66\) 0 0
\(67\) 473.860 0.864048 0.432024 0.901862i \(-0.357800\pi\)
0.432024 + 0.901862i \(0.357800\pi\)
\(68\) 0 0
\(69\) 975.925 1.70272
\(70\) 0 0
\(71\) −157.998 −0.264098 −0.132049 0.991243i \(-0.542156\pi\)
−0.132049 + 0.991243i \(0.542156\pi\)
\(72\) 0 0
\(73\) 270.077 0.433015 0.216508 0.976281i \(-0.430533\pi\)
0.216508 + 0.976281i \(0.430533\pi\)
\(74\) 0 0
\(75\) 1192.25 1.83558
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −325.457 −0.463504 −0.231752 0.972775i \(-0.574446\pi\)
−0.231752 + 0.972775i \(0.574446\pi\)
\(80\) 0 0
\(81\) 1645.74 2.25753
\(82\) 0 0
\(83\) 1033.08 1.36621 0.683104 0.730321i \(-0.260630\pi\)
0.683104 + 0.730321i \(0.260630\pi\)
\(84\) 0 0
\(85\) −1198.21 −1.52899
\(86\) 0 0
\(87\) 868.410 1.07015
\(88\) 0 0
\(89\) 149.769 0.178376 0.0891879 0.996015i \(-0.471573\pi\)
0.0891879 + 0.996015i \(0.471573\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −637.928 −0.711291
\(94\) 0 0
\(95\) −336.524 −0.363438
\(96\) 0 0
\(97\) −1865.72 −1.95294 −0.976468 0.215663i \(-0.930809\pi\)
−0.976468 + 0.215663i \(0.930809\pi\)
\(98\) 0 0
\(99\) −1396.62 −1.41783
\(100\) 0 0
\(101\) 534.549 0.526630 0.263315 0.964710i \(-0.415184\pi\)
0.263315 + 0.964710i \(0.415184\pi\)
\(102\) 0 0
\(103\) 1319.62 1.26239 0.631193 0.775626i \(-0.282566\pi\)
0.631193 + 0.775626i \(0.282566\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −693.556 −0.626622 −0.313311 0.949651i \(-0.601438\pi\)
−0.313311 + 0.949651i \(0.601438\pi\)
\(108\) 0 0
\(109\) −1965.99 −1.72760 −0.863798 0.503838i \(-0.831921\pi\)
−0.863798 + 0.503838i \(0.831921\pi\)
\(110\) 0 0
\(111\) −1608.90 −1.37577
\(112\) 0 0
\(113\) 2167.14 1.80414 0.902068 0.431595i \(-0.142049\pi\)
0.902068 + 0.431595i \(0.142049\pi\)
\(114\) 0 0
\(115\) −1616.78 −1.31100
\(116\) 0 0
\(117\) 1367.33 1.08042
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −855.786 −0.642965
\(122\) 0 0
\(123\) 969.130 0.710435
\(124\) 0 0
\(125\) 1.01640 0.000727276 0
\(126\) 0 0
\(127\) −1443.60 −1.00865 −0.504324 0.863514i \(-0.668258\pi\)
−0.504324 + 0.863514i \(0.668258\pi\)
\(128\) 0 0
\(129\) 3000.30 2.04776
\(130\) 0 0
\(131\) −2125.28 −1.41746 −0.708728 0.705481i \(-0.750731\pi\)
−0.708728 + 0.705481i \(0.750731\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5592.13 −3.56514
\(136\) 0 0
\(137\) −405.475 −0.252862 −0.126431 0.991975i \(-0.540352\pi\)
−0.126431 + 0.991975i \(0.540352\pi\)
\(138\) 0 0
\(139\) 1812.24 1.10585 0.552923 0.833232i \(-0.313512\pi\)
0.552923 + 0.833232i \(0.313512\pi\)
\(140\) 0 0
\(141\) −2570.33 −1.53518
\(142\) 0 0
\(143\) −465.249 −0.272071
\(144\) 0 0
\(145\) −1438.66 −0.823962
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2892.57 −1.59039 −0.795197 0.606351i \(-0.792633\pi\)
−0.795197 + 0.606351i \(0.792633\pi\)
\(150\) 0 0
\(151\) −1239.27 −0.667882 −0.333941 0.942594i \(-0.608379\pi\)
−0.333941 + 0.942594i \(0.608379\pi\)
\(152\) 0 0
\(153\) 4855.68 2.56574
\(154\) 0 0
\(155\) 1056.83 0.547657
\(156\) 0 0
\(157\) −1783.37 −0.906551 −0.453276 0.891370i \(-0.649745\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(158\) 0 0
\(159\) 2947.41 1.47009
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1279.37 0.614771 0.307385 0.951585i \(-0.400546\pi\)
0.307385 + 0.951585i \(0.400546\pi\)
\(164\) 0 0
\(165\) 3288.81 1.55172
\(166\) 0 0
\(167\) 971.264 0.450052 0.225026 0.974353i \(-0.427753\pi\)
0.225026 + 0.974353i \(0.427753\pi\)
\(168\) 0 0
\(169\) −1741.51 −0.792675
\(170\) 0 0
\(171\) 1363.75 0.609873
\(172\) 0 0
\(173\) 528.846 0.232413 0.116207 0.993225i \(-0.462927\pi\)
0.116207 + 0.993225i \(0.462927\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7717.75 3.27741
\(178\) 0 0
\(179\) −149.000 −0.0622168 −0.0311084 0.999516i \(-0.509904\pi\)
−0.0311084 + 0.999516i \(0.509904\pi\)
\(180\) 0 0
\(181\) 3624.17 1.48830 0.744151 0.668011i \(-0.232854\pi\)
0.744151 + 0.668011i \(0.232854\pi\)
\(182\) 0 0
\(183\) 6238.80 2.52014
\(184\) 0 0
\(185\) 2665.41 1.05927
\(186\) 0 0
\(187\) −1652.20 −0.646101
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3184.60 1.20644 0.603218 0.797576i \(-0.293885\pi\)
0.603218 + 0.797576i \(0.293885\pi\)
\(192\) 0 0
\(193\) −4597.63 −1.71474 −0.857370 0.514701i \(-0.827903\pi\)
−0.857370 + 0.514701i \(0.827903\pi\)
\(194\) 0 0
\(195\) −3219.85 −1.18245
\(196\) 0 0
\(197\) −3877.84 −1.40246 −0.701230 0.712935i \(-0.747365\pi\)
−0.701230 + 0.712935i \(0.747365\pi\)
\(198\) 0 0
\(199\) −1976.12 −0.703938 −0.351969 0.936012i \(-0.614488\pi\)
−0.351969 + 0.936012i \(0.614488\pi\)
\(200\) 0 0
\(201\) 4521.99 1.58685
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1605.52 −0.546998
\(206\) 0 0
\(207\) 6551.92 2.19995
\(208\) 0 0
\(209\) −464.030 −0.153577
\(210\) 0 0
\(211\) −4169.50 −1.36038 −0.680190 0.733036i \(-0.738103\pi\)
−0.680190 + 0.733036i \(0.738103\pi\)
\(212\) 0 0
\(213\) −1507.76 −0.485024
\(214\) 0 0
\(215\) −4970.49 −1.57667
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2577.31 0.795245
\(220\) 0 0
\(221\) 1617.55 0.492346
\(222\) 0 0
\(223\) 1595.43 0.479093 0.239547 0.970885i \(-0.423001\pi\)
0.239547 + 0.970885i \(0.423001\pi\)
\(224\) 0 0
\(225\) 8004.21 2.37162
\(226\) 0 0
\(227\) 857.809 0.250814 0.125407 0.992105i \(-0.459976\pi\)
0.125407 + 0.992105i \(0.459976\pi\)
\(228\) 0 0
\(229\) 78.4879 0.0226490 0.0113245 0.999936i \(-0.496395\pi\)
0.0113245 + 0.999936i \(0.496395\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 659.765 0.185505 0.0927524 0.995689i \(-0.470433\pi\)
0.0927524 + 0.995689i \(0.470433\pi\)
\(234\) 0 0
\(235\) 4258.17 1.18201
\(236\) 0 0
\(237\) −3105.80 −0.851239
\(238\) 0 0
\(239\) 2879.88 0.779430 0.389715 0.920935i \(-0.372573\pi\)
0.389715 + 0.920935i \(0.372573\pi\)
\(240\) 0 0
\(241\) −2334.52 −0.623981 −0.311991 0.950085i \(-0.600996\pi\)
−0.311991 + 0.950085i \(0.600996\pi\)
\(242\) 0 0
\(243\) 6154.57 1.62476
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 454.300 0.117030
\(248\) 0 0
\(249\) 9858.56 2.50908
\(250\) 0 0
\(251\) 1386.81 0.348743 0.174372 0.984680i \(-0.444211\pi\)
0.174372 + 0.984680i \(0.444211\pi\)
\(252\) 0 0
\(253\) −2229.37 −0.553988
\(254\) 0 0
\(255\) −11434.4 −2.80803
\(256\) 0 0
\(257\) −6053.37 −1.46926 −0.734628 0.678470i \(-0.762643\pi\)
−0.734628 + 0.678470i \(0.762643\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5830.12 1.38266
\(262\) 0 0
\(263\) 1003.42 0.235260 0.117630 0.993058i \(-0.462470\pi\)
0.117630 + 0.993058i \(0.462470\pi\)
\(264\) 0 0
\(265\) −4882.86 −1.13189
\(266\) 0 0
\(267\) 1429.22 0.327592
\(268\) 0 0
\(269\) 3512.07 0.796040 0.398020 0.917377i \(-0.369698\pi\)
0.398020 + 0.917377i \(0.369698\pi\)
\(270\) 0 0
\(271\) −38.9172 −0.00872343 −0.00436172 0.999990i \(-0.501388\pi\)
−0.00436172 + 0.999990i \(0.501388\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2723.52 −0.597217
\(276\) 0 0
\(277\) −195.950 −0.0425036 −0.0212518 0.999774i \(-0.506765\pi\)
−0.0212518 + 0.999774i \(0.506765\pi\)
\(278\) 0 0
\(279\) −4282.76 −0.919005
\(280\) 0 0
\(281\) 809.583 0.171871 0.0859354 0.996301i \(-0.472612\pi\)
0.0859354 + 0.996301i \(0.472612\pi\)
\(282\) 0 0
\(283\) 3798.61 0.797894 0.398947 0.916974i \(-0.369376\pi\)
0.398947 + 0.916974i \(0.369376\pi\)
\(284\) 0 0
\(285\) −3211.41 −0.667464
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 831.283 0.169201
\(290\) 0 0
\(291\) −17804.3 −3.58662
\(292\) 0 0
\(293\) 3143.28 0.626731 0.313366 0.949633i \(-0.398543\pi\)
0.313366 + 0.949633i \(0.398543\pi\)
\(294\) 0 0
\(295\) −12785.7 −2.52343
\(296\) 0 0
\(297\) −7710.95 −1.50651
\(298\) 0 0
\(299\) 2182.62 0.422154
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5101.14 0.967172
\(304\) 0 0
\(305\) −10335.6 −1.94038
\(306\) 0 0
\(307\) 7726.54 1.43641 0.718203 0.695833i \(-0.244965\pi\)
0.718203 + 0.695833i \(0.244965\pi\)
\(308\) 0 0
\(309\) 12593.0 2.31841
\(310\) 0 0
\(311\) 1477.91 0.269467 0.134734 0.990882i \(-0.456982\pi\)
0.134734 + 0.990882i \(0.456982\pi\)
\(312\) 0 0
\(313\) −6821.72 −1.23191 −0.615953 0.787783i \(-0.711229\pi\)
−0.615953 + 0.787783i \(0.711229\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −737.222 −0.130620 −0.0653099 0.997865i \(-0.520804\pi\)
−0.0653099 + 0.997865i \(0.520804\pi\)
\(318\) 0 0
\(319\) −1983.76 −0.348180
\(320\) 0 0
\(321\) −6618.53 −1.15081
\(322\) 0 0
\(323\) 1613.32 0.277917
\(324\) 0 0
\(325\) 2666.41 0.455096
\(326\) 0 0
\(327\) −18761.3 −3.17278
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3664.28 −0.608481 −0.304241 0.952595i \(-0.598403\pi\)
−0.304241 + 0.952595i \(0.598403\pi\)
\(332\) 0 0
\(333\) −10801.5 −1.77753
\(334\) 0 0
\(335\) −7491.42 −1.22179
\(336\) 0 0
\(337\) −3269.01 −0.528411 −0.264206 0.964466i \(-0.585110\pi\)
−0.264206 + 0.964466i \(0.585110\pi\)
\(338\) 0 0
\(339\) 20680.8 3.31335
\(340\) 0 0
\(341\) 1457.26 0.231422
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −15428.7 −2.40770
\(346\) 0 0
\(347\) −9042.54 −1.39893 −0.699465 0.714666i \(-0.746579\pi\)
−0.699465 + 0.714666i \(0.746579\pi\)
\(348\) 0 0
\(349\) −5151.89 −0.790185 −0.395092 0.918641i \(-0.629287\pi\)
−0.395092 + 0.918641i \(0.629287\pi\)
\(350\) 0 0
\(351\) 7549.26 1.14800
\(352\) 0 0
\(353\) 2142.35 0.323019 0.161510 0.986871i \(-0.448364\pi\)
0.161510 + 0.986871i \(0.448364\pi\)
\(354\) 0 0
\(355\) 2497.85 0.373443
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1429.97 0.210226 0.105113 0.994460i \(-0.466480\pi\)
0.105113 + 0.994460i \(0.466480\pi\)
\(360\) 0 0
\(361\) −6405.89 −0.933939
\(362\) 0 0
\(363\) −8166.67 −1.18082
\(364\) 0 0
\(365\) −4269.74 −0.612297
\(366\) 0 0
\(367\) 3020.31 0.429588 0.214794 0.976659i \(-0.431092\pi\)
0.214794 + 0.976659i \(0.431092\pi\)
\(368\) 0 0
\(369\) 6506.30 0.917899
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1647.11 −0.228643 −0.114322 0.993444i \(-0.536469\pi\)
−0.114322 + 0.993444i \(0.536469\pi\)
\(374\) 0 0
\(375\) 9.69938 0.00133566
\(376\) 0 0
\(377\) 1942.17 0.265323
\(378\) 0 0
\(379\) 4385.44 0.594366 0.297183 0.954821i \(-0.403953\pi\)
0.297183 + 0.954821i \(0.403953\pi\)
\(380\) 0 0
\(381\) −13776.1 −1.85241
\(382\) 0 0
\(383\) 14389.0 1.91969 0.959845 0.280532i \(-0.0905108\pi\)
0.959845 + 0.280532i \(0.0905108\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 20142.7 2.64576
\(388\) 0 0
\(389\) −2665.56 −0.347428 −0.173714 0.984796i \(-0.555577\pi\)
−0.173714 + 0.984796i \(0.555577\pi\)
\(390\) 0 0
\(391\) 7750.94 1.00251
\(392\) 0 0
\(393\) −20281.3 −2.60320
\(394\) 0 0
\(395\) 5145.27 0.655409
\(396\) 0 0
\(397\) −4457.71 −0.563542 −0.281771 0.959482i \(-0.590922\pi\)
−0.281771 + 0.959482i \(0.590922\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13313.8 −1.65800 −0.829001 0.559246i \(-0.811091\pi\)
−0.829001 + 0.559246i \(0.811091\pi\)
\(402\) 0 0
\(403\) −1426.70 −0.176350
\(404\) 0 0
\(405\) −26018.1 −3.19222
\(406\) 0 0
\(407\) 3675.32 0.447614
\(408\) 0 0
\(409\) −4092.23 −0.494738 −0.247369 0.968921i \(-0.579566\pi\)
−0.247369 + 0.968921i \(0.579566\pi\)
\(410\) 0 0
\(411\) −3869.40 −0.464388
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −16332.3 −1.93186
\(416\) 0 0
\(417\) 17294.0 2.03092
\(418\) 0 0
\(419\) −8297.69 −0.967467 −0.483733 0.875215i \(-0.660720\pi\)
−0.483733 + 0.875215i \(0.660720\pi\)
\(420\) 0 0
\(421\) 14729.2 1.70512 0.852561 0.522627i \(-0.175048\pi\)
0.852561 + 0.522627i \(0.175048\pi\)
\(422\) 0 0
\(423\) −17256.0 −1.98349
\(424\) 0 0
\(425\) 9469.01 1.08074
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4439.82 −0.499666
\(430\) 0 0
\(431\) −4940.51 −0.552149 −0.276074 0.961136i \(-0.589034\pi\)
−0.276074 + 0.961136i \(0.589034\pi\)
\(432\) 0 0
\(433\) −8291.22 −0.920209 −0.460105 0.887865i \(-0.652188\pi\)
−0.460105 + 0.887865i \(0.652188\pi\)
\(434\) 0 0
\(435\) −13729.0 −1.51323
\(436\) 0 0
\(437\) 2176.90 0.238296
\(438\) 0 0
\(439\) −8097.71 −0.880370 −0.440185 0.897907i \(-0.645087\pi\)
−0.440185 + 0.897907i \(0.645087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6459.15 0.692739 0.346370 0.938098i \(-0.387414\pi\)
0.346370 + 0.938098i \(0.387414\pi\)
\(444\) 0 0
\(445\) −2367.75 −0.252229
\(446\) 0 0
\(447\) −27603.5 −2.92080
\(448\) 0 0
\(449\) 4951.16 0.520401 0.260200 0.965555i \(-0.416211\pi\)
0.260200 + 0.965555i \(0.416211\pi\)
\(450\) 0 0
\(451\) −2213.84 −0.231144
\(452\) 0 0
\(453\) −11826.2 −1.22658
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15817.5 1.61906 0.809530 0.587078i \(-0.199722\pi\)
0.809530 + 0.587078i \(0.199722\pi\)
\(458\) 0 0
\(459\) 26809.0 2.72623
\(460\) 0 0
\(461\) 8584.25 0.867263 0.433632 0.901090i \(-0.357232\pi\)
0.433632 + 0.901090i \(0.357232\pi\)
\(462\) 0 0
\(463\) 15304.5 1.53620 0.768101 0.640329i \(-0.221202\pi\)
0.768101 + 0.640329i \(0.221202\pi\)
\(464\) 0 0
\(465\) 10085.2 1.00579
\(466\) 0 0
\(467\) −8541.74 −0.846391 −0.423196 0.906038i \(-0.639092\pi\)
−0.423196 + 0.906038i \(0.639092\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −17018.5 −1.66491
\(472\) 0 0
\(473\) −6853.77 −0.666251
\(474\) 0 0
\(475\) 2659.43 0.256890
\(476\) 0 0
\(477\) 19787.6 1.89939
\(478\) 0 0
\(479\) −2298.21 −0.219224 −0.109612 0.993974i \(-0.534961\pi\)
−0.109612 + 0.993974i \(0.534961\pi\)
\(480\) 0 0
\(481\) −3598.25 −0.341094
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 29495.8 2.76151
\(486\) 0 0
\(487\) −11019.2 −1.02531 −0.512657 0.858593i \(-0.671339\pi\)
−0.512657 + 0.858593i \(0.671339\pi\)
\(488\) 0 0
\(489\) 12208.8 1.12904
\(490\) 0 0
\(491\) −17105.3 −1.57221 −0.786103 0.618096i \(-0.787904\pi\)
−0.786103 + 0.618096i \(0.787904\pi\)
\(492\) 0 0
\(493\) 6897.05 0.630076
\(494\) 0 0
\(495\) 22079.6 2.00486
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1293.00 0.115997 0.0579987 0.998317i \(-0.481528\pi\)
0.0579987 + 0.998317i \(0.481528\pi\)
\(500\) 0 0
\(501\) 9268.66 0.826534
\(502\) 0 0
\(503\) 258.772 0.0229385 0.0114692 0.999934i \(-0.496349\pi\)
0.0114692 + 0.999934i \(0.496349\pi\)
\(504\) 0 0
\(505\) −8450.88 −0.744672
\(506\) 0 0
\(507\) −16619.0 −1.45577
\(508\) 0 0
\(509\) 16265.0 1.41637 0.708186 0.706026i \(-0.249514\pi\)
0.708186 + 0.706026i \(0.249514\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7529.48 0.648020
\(514\) 0 0
\(515\) −20862.3 −1.78505
\(516\) 0 0
\(517\) 5871.56 0.499479
\(518\) 0 0
\(519\) 5046.72 0.426833
\(520\) 0 0
\(521\) −16644.7 −1.39965 −0.699826 0.714313i \(-0.746739\pi\)
−0.699826 + 0.714313i \(0.746739\pi\)
\(522\) 0 0
\(523\) 10274.4 0.859018 0.429509 0.903063i \(-0.358687\pi\)
0.429509 + 0.903063i \(0.358687\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5066.52 −0.418788
\(528\) 0 0
\(529\) −1708.41 −0.140413
\(530\) 0 0
\(531\) 51813.5 4.23449
\(532\) 0 0
\(533\) 2167.42 0.176138
\(534\) 0 0
\(535\) 10964.7 0.886064
\(536\) 0 0
\(537\) −1421.89 −0.114263
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17436.3 1.38567 0.692833 0.721098i \(-0.256362\pi\)
0.692833 + 0.721098i \(0.256362\pi\)
\(542\) 0 0
\(543\) 34585.1 2.73331
\(544\) 0 0
\(545\) 31081.1 2.44288
\(546\) 0 0
\(547\) −3708.40 −0.289871 −0.144936 0.989441i \(-0.546297\pi\)
−0.144936 + 0.989441i \(0.546297\pi\)
\(548\) 0 0
\(549\) 41884.5 3.25608
\(550\) 0 0
\(551\) 1937.08 0.149768
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 25435.7 1.94538
\(556\) 0 0
\(557\) 19921.6 1.51545 0.757725 0.652574i \(-0.226311\pi\)
0.757725 + 0.652574i \(0.226311\pi\)
\(558\) 0 0
\(559\) 6710.05 0.507701
\(560\) 0 0
\(561\) −15766.8 −1.18658
\(562\) 0 0
\(563\) −6852.74 −0.512981 −0.256491 0.966547i \(-0.582566\pi\)
−0.256491 + 0.966547i \(0.582566\pi\)
\(564\) 0 0
\(565\) −34261.1 −2.55110
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5473.04 −0.403237 −0.201618 0.979464i \(-0.564620\pi\)
−0.201618 + 0.979464i \(0.564620\pi\)
\(570\) 0 0
\(571\) 21607.0 1.58358 0.791792 0.610791i \(-0.209149\pi\)
0.791792 + 0.610791i \(0.209149\pi\)
\(572\) 0 0
\(573\) 30390.2 2.21565
\(574\) 0 0
\(575\) 12776.8 0.926662
\(576\) 0 0
\(577\) 1160.90 0.0837587 0.0418794 0.999123i \(-0.486665\pi\)
0.0418794 + 0.999123i \(0.486665\pi\)
\(578\) 0 0
\(579\) −43874.7 −3.14917
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6732.95 −0.478302
\(584\) 0 0
\(585\) −21616.6 −1.52775
\(586\) 0 0
\(587\) 6275.52 0.441258 0.220629 0.975358i \(-0.429189\pi\)
0.220629 + 0.975358i \(0.429189\pi\)
\(588\) 0 0
\(589\) −1422.96 −0.0995453
\(590\) 0 0
\(591\) −37005.8 −2.57566
\(592\) 0 0
\(593\) 14027.2 0.971378 0.485689 0.874132i \(-0.338569\pi\)
0.485689 + 0.874132i \(0.338569\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18857.9 −1.29280
\(598\) 0 0
\(599\) −22827.0 −1.55707 −0.778535 0.627601i \(-0.784037\pi\)
−0.778535 + 0.627601i \(0.784037\pi\)
\(600\) 0 0
\(601\) −14056.5 −0.954036 −0.477018 0.878894i \(-0.658282\pi\)
−0.477018 + 0.878894i \(0.658282\pi\)
\(602\) 0 0
\(603\) 30358.6 2.05025
\(604\) 0 0
\(605\) 13529.4 0.909172
\(606\) 0 0
\(607\) −20502.3 −1.37094 −0.685472 0.728099i \(-0.740404\pi\)
−0.685472 + 0.728099i \(0.740404\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5748.44 −0.380617
\(612\) 0 0
\(613\) −12496.9 −0.823403 −0.411702 0.911319i \(-0.635065\pi\)
−0.411702 + 0.911319i \(0.635065\pi\)
\(614\) 0 0
\(615\) −15321.3 −1.00458
\(616\) 0 0
\(617\) 3715.94 0.242460 0.121230 0.992624i \(-0.461316\pi\)
0.121230 + 0.992624i \(0.461316\pi\)
\(618\) 0 0
\(619\) 1497.30 0.0972236 0.0486118 0.998818i \(-0.484520\pi\)
0.0486118 + 0.998818i \(0.484520\pi\)
\(620\) 0 0
\(621\) 36174.3 2.33756
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −15633.0 −1.00051
\(626\) 0 0
\(627\) −4428.19 −0.282049
\(628\) 0 0
\(629\) −12778.2 −0.810014
\(630\) 0 0
\(631\) −27717.6 −1.74869 −0.874343 0.485309i \(-0.838707\pi\)
−0.874343 + 0.485309i \(0.838707\pi\)
\(632\) 0 0
\(633\) −39789.0 −2.49838
\(634\) 0 0
\(635\) 22822.3 1.42626
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −10122.4 −0.626662
\(640\) 0 0
\(641\) 11878.5 0.731941 0.365971 0.930626i \(-0.380737\pi\)
0.365971 + 0.930626i \(0.380737\pi\)
\(642\) 0 0
\(643\) −21166.1 −1.29815 −0.649073 0.760726i \(-0.724843\pi\)
−0.649073 + 0.760726i \(0.724843\pi\)
\(644\) 0 0
\(645\) −47432.8 −2.89560
\(646\) 0 0
\(647\) 17912.6 1.08844 0.544218 0.838944i \(-0.316827\pi\)
0.544218 + 0.838944i \(0.316827\pi\)
\(648\) 0 0
\(649\) −17630.1 −1.06632
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4606.94 −0.276085 −0.138043 0.990426i \(-0.544081\pi\)
−0.138043 + 0.990426i \(0.544081\pi\)
\(654\) 0 0
\(655\) 33599.4 2.00433
\(656\) 0 0
\(657\) 17302.9 1.02748
\(658\) 0 0
\(659\) −6753.57 −0.399213 −0.199607 0.979876i \(-0.563966\pi\)
−0.199607 + 0.979876i \(0.563966\pi\)
\(660\) 0 0
\(661\) −31888.8 −1.87645 −0.938223 0.346031i \(-0.887529\pi\)
−0.938223 + 0.346031i \(0.887529\pi\)
\(662\) 0 0
\(663\) 15436.1 0.904208
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9306.40 0.540248
\(668\) 0 0
\(669\) 15225.0 0.879868
\(670\) 0 0
\(671\) −14251.7 −0.819940
\(672\) 0 0
\(673\) 4332.88 0.248173 0.124086 0.992271i \(-0.460400\pi\)
0.124086 + 0.992271i \(0.460400\pi\)
\(674\) 0 0
\(675\) 44192.6 2.51996
\(676\) 0 0
\(677\) −1484.13 −0.0842536 −0.0421268 0.999112i \(-0.513413\pi\)
−0.0421268 + 0.999112i \(0.513413\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8185.98 0.460627
\(682\) 0 0
\(683\) 3706.31 0.207640 0.103820 0.994596i \(-0.466893\pi\)
0.103820 + 0.994596i \(0.466893\pi\)
\(684\) 0 0
\(685\) 6410.29 0.357554
\(686\) 0 0
\(687\) 749.001 0.0415956
\(688\) 0 0
\(689\) 6591.76 0.364479
\(690\) 0 0
\(691\) 25803.2 1.42055 0.710276 0.703923i \(-0.248570\pi\)
0.710276 + 0.703923i \(0.248570\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28650.4 −1.56370
\(696\) 0 0
\(697\) 7696.98 0.418284
\(698\) 0 0
\(699\) 6296.06 0.340685
\(700\) 0 0
\(701\) −16440.9 −0.885827 −0.442914 0.896564i \(-0.646055\pi\)
−0.442914 + 0.896564i \(0.646055\pi\)
\(702\) 0 0
\(703\) −3588.82 −0.192539
\(704\) 0 0
\(705\) 40635.2 2.17080
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16621.6 0.880447 0.440223 0.897888i \(-0.354899\pi\)
0.440223 + 0.897888i \(0.354899\pi\)
\(710\) 0 0
\(711\) −20851.0 −1.09982
\(712\) 0 0
\(713\) −6836.42 −0.359083
\(714\) 0 0
\(715\) 7355.29 0.384717
\(716\) 0 0
\(717\) 27482.3 1.43145
\(718\) 0 0
\(719\) −17426.7 −0.903904 −0.451952 0.892042i \(-0.649272\pi\)
−0.451952 + 0.892042i \(0.649272\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −22278.0 −1.14596
\(724\) 0 0
\(725\) 11369.2 0.582405
\(726\) 0 0
\(727\) 19950.2 1.01776 0.508879 0.860838i \(-0.330060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(728\) 0 0
\(729\) 14297.4 0.726385
\(730\) 0 0
\(731\) 23828.8 1.20566
\(732\) 0 0
\(733\) −12706.3 −0.640270 −0.320135 0.947372i \(-0.603728\pi\)
−0.320135 + 0.947372i \(0.603728\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10329.9 −0.516290
\(738\) 0 0
\(739\) 15512.8 0.772188 0.386094 0.922460i \(-0.373824\pi\)
0.386094 + 0.922460i \(0.373824\pi\)
\(740\) 0 0
\(741\) 4335.33 0.214929
\(742\) 0 0
\(743\) −1559.42 −0.0769981 −0.0384991 0.999259i \(-0.512258\pi\)
−0.0384991 + 0.999259i \(0.512258\pi\)
\(744\) 0 0
\(745\) 45729.7 2.24887
\(746\) 0 0
\(747\) 66186.0 3.24179
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10347.3 0.502766 0.251383 0.967888i \(-0.419115\pi\)
0.251383 + 0.967888i \(0.419115\pi\)
\(752\) 0 0
\(753\) 13234.2 0.640477
\(754\) 0 0
\(755\) 19592.0 0.944406
\(756\) 0 0
\(757\) 40281.7 1.93403 0.967017 0.254711i \(-0.0819805\pi\)
0.967017 + 0.254711i \(0.0819805\pi\)
\(758\) 0 0
\(759\) −21274.6 −1.01742
\(760\) 0 0
\(761\) 8577.78 0.408600 0.204300 0.978908i \(-0.434508\pi\)
0.204300 + 0.978908i \(0.434508\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −76765.2 −3.62804
\(766\) 0 0
\(767\) 17260.4 0.812567
\(768\) 0 0
\(769\) −10747.8 −0.504001 −0.252000 0.967727i \(-0.581088\pi\)
−0.252000 + 0.967727i \(0.581088\pi\)
\(770\) 0 0
\(771\) −57766.6 −2.69833
\(772\) 0 0
\(773\) −11788.9 −0.548536 −0.274268 0.961653i \(-0.588436\pi\)
−0.274268 + 0.961653i \(0.588436\pi\)
\(774\) 0 0
\(775\) −8351.77 −0.387103
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2161.74 0.0994254
\(780\) 0 0
\(781\) 3444.27 0.157805
\(782\) 0 0
\(783\) 32189.1 1.46915
\(784\) 0 0
\(785\) 28194.0 1.28189
\(786\) 0 0
\(787\) 11312.5 0.512386 0.256193 0.966626i \(-0.417532\pi\)
0.256193 + 0.966626i \(0.417532\pi\)
\(788\) 0 0
\(789\) 9575.48 0.432061
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 13952.8 0.624817
\(794\) 0 0
\(795\) −46596.6 −2.07876
\(796\) 0 0
\(797\) −32275.4 −1.43444 −0.717222 0.696845i \(-0.754587\pi\)
−0.717222 + 0.696845i \(0.754587\pi\)
\(798\) 0 0
\(799\) −20413.9 −0.903871
\(800\) 0 0
\(801\) 9595.18 0.423257
\(802\) 0 0
\(803\) −5887.52 −0.258737
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 33515.3 1.46195
\(808\) 0 0
\(809\) −10310.8 −0.448095 −0.224047 0.974578i \(-0.571927\pi\)
−0.224047 + 0.974578i \(0.571927\pi\)
\(810\) 0 0
\(811\) −13890.7 −0.601439 −0.300720 0.953713i \(-0.597227\pi\)
−0.300720 + 0.953713i \(0.597227\pi\)
\(812\) 0 0
\(813\) −371.382 −0.0160208
\(814\) 0 0
\(815\) −20225.9 −0.869305
\(816\) 0 0
\(817\) 6692.47 0.286585
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31610.8 −1.34376 −0.671878 0.740662i \(-0.734512\pi\)
−0.671878 + 0.740662i \(0.734512\pi\)
\(822\) 0 0
\(823\) −11508.8 −0.487448 −0.243724 0.969845i \(-0.578369\pi\)
−0.243724 + 0.969845i \(0.578369\pi\)
\(824\) 0 0
\(825\) −25990.3 −1.09681
\(826\) 0 0
\(827\) 42336.9 1.78017 0.890083 0.455798i \(-0.150646\pi\)
0.890083 + 0.455798i \(0.150646\pi\)
\(828\) 0 0
\(829\) −35928.6 −1.50525 −0.752625 0.658450i \(-0.771213\pi\)
−0.752625 + 0.658450i \(0.771213\pi\)
\(830\) 0 0
\(831\) −1869.93 −0.0780592
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −15355.1 −0.636388
\(836\) 0 0
\(837\) −23645.9 −0.976489
\(838\) 0 0
\(839\) −1043.87 −0.0429541 −0.0214771 0.999769i \(-0.506837\pi\)
−0.0214771 + 0.999769i \(0.506837\pi\)
\(840\) 0 0
\(841\) −16107.9 −0.660456
\(842\) 0 0
\(843\) 7725.76 0.315646
\(844\) 0 0
\(845\) 27532.1 1.12087
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 36249.7 1.46536
\(850\) 0 0
\(851\) −17242.0 −0.694533
\(852\) 0 0
\(853\) −23453.0 −0.941403 −0.470702 0.882292i \(-0.655999\pi\)
−0.470702 + 0.882292i \(0.655999\pi\)
\(854\) 0 0
\(855\) −21560.0 −0.862380
\(856\) 0 0
\(857\) 39863.5 1.58893 0.794464 0.607312i \(-0.207752\pi\)
0.794464 + 0.607312i \(0.207752\pi\)
\(858\) 0 0
\(859\) 7907.93 0.314104 0.157052 0.987590i \(-0.449801\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6769.67 −0.267025 −0.133512 0.991047i \(-0.542626\pi\)
−0.133512 + 0.991047i \(0.542626\pi\)
\(864\) 0 0
\(865\) −8360.72 −0.328639
\(866\) 0 0
\(867\) 7932.84 0.310742
\(868\) 0 0
\(869\) 7094.78 0.276955
\(870\) 0 0
\(871\) 10113.3 0.393427
\(872\) 0 0
\(873\) −119530. −4.63400
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17317.7 0.666791 0.333396 0.942787i \(-0.391806\pi\)
0.333396 + 0.942787i \(0.391806\pi\)
\(878\) 0 0
\(879\) 29996.0 1.15101
\(880\) 0 0
\(881\) 33759.7 1.29103 0.645513 0.763750i \(-0.276644\pi\)
0.645513 + 0.763750i \(0.276644\pi\)
\(882\) 0 0
\(883\) 20233.7 0.771142 0.385571 0.922678i \(-0.374004\pi\)
0.385571 + 0.922678i \(0.374004\pi\)
\(884\) 0 0
\(885\) −122013. −4.63436
\(886\) 0 0
\(887\) 27806.7 1.05260 0.526300 0.850299i \(-0.323579\pi\)
0.526300 + 0.850299i \(0.323579\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −35876.1 −1.34893
\(892\) 0 0
\(893\) −5733.37 −0.214849
\(894\) 0 0
\(895\) 2355.60 0.0879765
\(896\) 0 0
\(897\) 20828.5 0.775298
\(898\) 0 0
\(899\) −6083.27 −0.225682
\(900\) 0 0
\(901\) 23408.8 0.865548
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −57295.9 −2.10451
\(906\) 0 0
\(907\) 19192.9 0.702635 0.351318 0.936256i \(-0.385734\pi\)
0.351318 + 0.936256i \(0.385734\pi\)
\(908\) 0 0
\(909\) 34246.8 1.24961
\(910\) 0 0
\(911\) 39131.9 1.42316 0.711579 0.702607i \(-0.247981\pi\)
0.711579 + 0.702607i \(0.247981\pi\)
\(912\) 0 0
\(913\) −22520.5 −0.816343
\(914\) 0 0
\(915\) −98631.4 −3.56356
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 50478.2 1.81188 0.905942 0.423402i \(-0.139164\pi\)
0.905942 + 0.423402i \(0.139164\pi\)
\(920\) 0 0
\(921\) 73733.5 2.63800
\(922\) 0 0
\(923\) −3372.05 −0.120252
\(924\) 0 0
\(925\) −21063.8 −0.748729
\(926\) 0 0
\(927\) 84543.5 2.99544
\(928\) 0 0
\(929\) 19092.5 0.674277 0.337138 0.941455i \(-0.390541\pi\)
0.337138 + 0.941455i \(0.390541\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 14103.5 0.494885
\(934\) 0 0
\(935\) 26120.2 0.913607
\(936\) 0 0
\(937\) −19922.3 −0.694592 −0.347296 0.937756i \(-0.612900\pi\)
−0.347296 + 0.937756i \(0.612900\pi\)
\(938\) 0 0
\(939\) −65098.9 −2.26243
\(940\) 0 0
\(941\) 15325.0 0.530906 0.265453 0.964124i \(-0.414479\pi\)
0.265453 + 0.964124i \(0.414479\pi\)
\(942\) 0 0
\(943\) 10385.8 0.358650
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2260.56 −0.0775696 −0.0387848 0.999248i \(-0.512349\pi\)
−0.0387848 + 0.999248i \(0.512349\pi\)
\(948\) 0 0
\(949\) 5764.06 0.197165
\(950\) 0 0
\(951\) −7035.22 −0.239887
\(952\) 0 0
\(953\) 24905.1 0.846543 0.423272 0.906003i \(-0.360882\pi\)
0.423272 + 0.906003i \(0.360882\pi\)
\(954\) 0 0
\(955\) −50346.4 −1.70594
\(956\) 0 0
\(957\) −18930.8 −0.639443
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25322.3 −0.849997
\(962\) 0 0
\(963\) −44433.8 −1.48687
\(964\) 0 0
\(965\) 72685.6 2.42470
\(966\) 0 0
\(967\) 28438.6 0.945734 0.472867 0.881134i \(-0.343219\pi\)
0.472867 + 0.881134i \(0.343219\pi\)
\(968\) 0 0
\(969\) 15395.7 0.510403
\(970\) 0 0
\(971\) 15280.4 0.505016 0.252508 0.967595i \(-0.418745\pi\)
0.252508 + 0.967595i \(0.418745\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 25445.3 0.835796
\(976\) 0 0
\(977\) −31083.5 −1.01786 −0.508930 0.860808i \(-0.669959\pi\)
−0.508930 + 0.860808i \(0.669959\pi\)
\(978\) 0 0
\(979\) −3264.87 −0.106584
\(980\) 0 0
\(981\) −125955. −4.09931
\(982\) 0 0
\(983\) 9506.14 0.308442 0.154221 0.988036i \(-0.450713\pi\)
0.154221 + 0.988036i \(0.450713\pi\)
\(984\) 0 0
\(985\) 61306.1 1.98312
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32153.0 1.03378
\(990\) 0 0
\(991\) −41313.2 −1.32427 −0.662137 0.749383i \(-0.730350\pi\)
−0.662137 + 0.749383i \(0.730350\pi\)
\(992\) 0 0
\(993\) −34967.8 −1.11749
\(994\) 0 0
\(995\) 31241.2 0.995391
\(996\) 0 0
\(997\) 29778.9 0.945946 0.472973 0.881077i \(-0.343181\pi\)
0.472973 + 0.881077i \(0.343181\pi\)
\(998\) 0 0
\(999\) −59636.7 −1.88871
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.4.a.be.1.3 3
4.3 odd 2 392.4.a.i.1.1 3
7.2 even 3 112.4.i.e.81.1 6
7.4 even 3 112.4.i.e.65.1 6
7.6 odd 2 784.4.a.bb.1.1 3
28.3 even 6 392.4.i.m.177.1 6
28.11 odd 6 56.4.i.b.9.3 6
28.19 even 6 392.4.i.m.361.1 6
28.23 odd 6 56.4.i.b.25.3 yes 6
28.27 even 2 392.4.a.l.1.3 3
56.11 odd 6 448.4.i.j.65.1 6
56.37 even 6 448.4.i.m.193.3 6
56.51 odd 6 448.4.i.j.193.1 6
56.53 even 6 448.4.i.m.65.3 6
84.11 even 6 504.4.s.h.289.1 6
84.23 even 6 504.4.s.h.361.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.4.i.b.9.3 6 28.11 odd 6
56.4.i.b.25.3 yes 6 28.23 odd 6
112.4.i.e.65.1 6 7.4 even 3
112.4.i.e.81.1 6 7.2 even 3
392.4.a.i.1.1 3 4.3 odd 2
392.4.a.l.1.3 3 28.27 even 2
392.4.i.m.177.1 6 28.3 even 6
392.4.i.m.361.1 6 28.19 even 6
448.4.i.j.65.1 6 56.11 odd 6
448.4.i.j.193.1 6 56.51 odd 6
448.4.i.m.65.3 6 56.53 even 6
448.4.i.m.193.3 6 56.37 even 6
504.4.s.h.289.1 6 84.11 even 6
504.4.s.h.361.1 6 84.23 even 6
784.4.a.bb.1.1 3 7.6 odd 2
784.4.a.be.1.3 3 1.1 even 1 trivial