Properties

Label 14-5175e7-1.1-c1e7-0-0
Degree $14$
Conductor $9.940\times 10^{25}$
Sign $1$
Analytic cond. $2.05736\times 10^{11}$
Root an. cond. $6.42826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5·7-s + 4·8-s − 12·11-s + 2·13-s + 10·14-s + 5·16-s + 11·17-s + 16·19-s − 24·22-s + 7·23-s + 4·26-s + 10·28-s + 29-s + 5·31-s + 22·34-s + 17·37-s + 32·38-s − 19·41-s + 14·43-s − 24·44-s + 14·46-s − 6·47-s + 3·49-s + 4·52-s − 15·53-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.88·7-s + 1.41·8-s − 3.61·11-s + 0.554·13-s + 2.67·14-s + 5/4·16-s + 2.66·17-s + 3.67·19-s − 5.11·22-s + 1.45·23-s + 0.784·26-s + 1.88·28-s + 0.185·29-s + 0.898·31-s + 3.77·34-s + 2.79·37-s + 5.19·38-s − 2.96·41-s + 2.13·43-s − 3.61·44-s + 2.06·46-s − 0.875·47-s + 3/7·49-s + 0.554·52-s − 2.06·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{14} \cdot 5^{14} \cdot 23^{7}\right)^{s/2} \, \Gamma_{\C}(s)^{7} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{14} \cdot 5^{14} \cdot 23^{7}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{7} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(14\)
Conductor: \(3^{14} \cdot 5^{14} \cdot 23^{7}\)
Sign: $1$
Analytic conductor: \(2.05736\times 10^{11}\)
Root analytic conductor: \(6.42826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((14,\ 3^{14} \cdot 5^{14} \cdot 23^{7} ,\ ( \ : [1/2]^{7} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(43.58523449\)
\(L(\frac12)\) \(\approx\) \(43.58523449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
23 \( ( 1 - T )^{7} \)
good2 \( 1 - p T + p T^{2} - p^{2} T^{3} + 7 T^{4} - p^{2} T^{5} + p T^{6} - 3 p T^{7} + p^{2} T^{8} - p^{4} T^{9} + 7 p^{3} T^{10} - p^{6} T^{11} + p^{6} T^{12} - p^{7} T^{13} + p^{7} T^{14} \)
7 \( 1 - 5 T + 22 T^{2} - 69 T^{3} + 242 T^{4} - 795 T^{5} + 2389 T^{6} - 6782 T^{7} + 2389 p T^{8} - 795 p^{2} T^{9} + 242 p^{3} T^{10} - 69 p^{4} T^{11} + 22 p^{5} T^{12} - 5 p^{6} T^{13} + p^{7} T^{14} \)
11 \( 1 + 12 T + 85 T^{2} + 454 T^{3} + 2117 T^{4} + 8636 T^{5} + 31593 T^{6} + 106948 T^{7} + 31593 p T^{8} + 8636 p^{2} T^{9} + 2117 p^{3} T^{10} + 454 p^{4} T^{11} + 85 p^{5} T^{12} + 12 p^{6} T^{13} + p^{7} T^{14} \)
13 \( 1 - 2 T + 5 p T^{2} - 138 T^{3} + 2003 T^{4} - 4230 T^{5} + 38379 T^{6} - 71996 T^{7} + 38379 p T^{8} - 4230 p^{2} T^{9} + 2003 p^{3} T^{10} - 138 p^{4} T^{11} + 5 p^{6} T^{12} - 2 p^{6} T^{13} + p^{7} T^{14} \)
17 \( 1 - 11 T + 118 T^{2} - 847 T^{3} + 5650 T^{4} - 1797 p T^{5} + 154799 T^{6} - 657626 T^{7} + 154799 p T^{8} - 1797 p^{3} T^{9} + 5650 p^{3} T^{10} - 847 p^{4} T^{11} + 118 p^{5} T^{12} - 11 p^{6} T^{13} + p^{7} T^{14} \)
19 \( 1 - 16 T + 215 T^{2} - 1878 T^{3} + 14471 T^{4} - 87496 T^{5} + 480449 T^{6} - 2186420 T^{7} + 480449 p T^{8} - 87496 p^{2} T^{9} + 14471 p^{3} T^{10} - 1878 p^{4} T^{11} + 215 p^{5} T^{12} - 16 p^{6} T^{13} + p^{7} T^{14} \)
29 \( 1 - T + 128 T^{2} - 245 T^{3} + 8366 T^{4} - 17091 T^{5} + 357125 T^{6} - 637966 T^{7} + 357125 p T^{8} - 17091 p^{2} T^{9} + 8366 p^{3} T^{10} - 245 p^{4} T^{11} + 128 p^{5} T^{12} - p^{6} T^{13} + p^{7} T^{14} \)
31 \( 1 - 5 T + 136 T^{2} - 741 T^{3} + 9446 T^{4} - 47311 T^{5} + 432575 T^{6} - 1806862 T^{7} + 432575 p T^{8} - 47311 p^{2} T^{9} + 9446 p^{3} T^{10} - 741 p^{4} T^{11} + 136 p^{5} T^{12} - 5 p^{6} T^{13} + p^{7} T^{14} \)
37 \( 1 - 17 T + 326 T^{2} - 3777 T^{3} + 40884 T^{4} - 349491 T^{5} + 2661449 T^{6} - 17243126 T^{7} + 2661449 p T^{8} - 349491 p^{2} T^{9} + 40884 p^{3} T^{10} - 3777 p^{4} T^{11} + 326 p^{5} T^{12} - 17 p^{6} T^{13} + p^{7} T^{14} \)
41 \( 1 + 19 T + 394 T^{2} + 4701 T^{3} + 55916 T^{4} + 481409 T^{5} + 4052625 T^{6} + 26296414 T^{7} + 4052625 p T^{8} + 481409 p^{2} T^{9} + 55916 p^{3} T^{10} + 4701 p^{4} T^{11} + 394 p^{5} T^{12} + 19 p^{6} T^{13} + p^{7} T^{14} \)
43 \( 1 - 14 T + 225 T^{2} - 2344 T^{3} + 23113 T^{4} - 197474 T^{5} + 1484753 T^{6} - 10496528 T^{7} + 1484753 p T^{8} - 197474 p^{2} T^{9} + 23113 p^{3} T^{10} - 2344 p^{4} T^{11} + 225 p^{5} T^{12} - 14 p^{6} T^{13} + p^{7} T^{14} \)
47 \( 1 + 6 T + 113 T^{2} + 766 T^{3} + 7517 T^{4} + 50706 T^{5} + 433805 T^{6} + 2517332 T^{7} + 433805 p T^{8} + 50706 p^{2} T^{9} + 7517 p^{3} T^{10} + 766 p^{4} T^{11} + 113 p^{5} T^{12} + 6 p^{6} T^{13} + p^{7} T^{14} \)
53 \( 1 + 15 T + 208 T^{2} + 1457 T^{3} + 14012 T^{4} + 92953 T^{5} + 981327 T^{6} + 6221462 T^{7} + 981327 p T^{8} + 92953 p^{2} T^{9} + 14012 p^{3} T^{10} + 1457 p^{4} T^{11} + 208 p^{5} T^{12} + 15 p^{6} T^{13} + p^{7} T^{14} \)
59 \( 1 + 11 T + 230 T^{2} + 1599 T^{3} + 18416 T^{4} + 66169 T^{5} + 690007 T^{6} + 1175722 T^{7} + 690007 p T^{8} + 66169 p^{2} T^{9} + 18416 p^{3} T^{10} + 1599 p^{4} T^{11} + 230 p^{5} T^{12} + 11 p^{6} T^{13} + p^{7} T^{14} \)
61 \( 1 - 8 T + 145 T^{2} - 942 T^{3} + 15371 T^{4} - 104880 T^{5} + 1138851 T^{6} - 6201236 T^{7} + 1138851 p T^{8} - 104880 p^{2} T^{9} + 15371 p^{3} T^{10} - 942 p^{4} T^{11} + 145 p^{5} T^{12} - 8 p^{6} T^{13} + p^{7} T^{14} \)
67 \( 1 + 3 T + 118 T^{2} + 155 T^{3} + 8162 T^{4} + 19373 T^{5} + 678793 T^{6} + 2355010 T^{7} + 678793 p T^{8} + 19373 p^{2} T^{9} + 8162 p^{3} T^{10} + 155 p^{4} T^{11} + 118 p^{5} T^{12} + 3 p^{6} T^{13} + p^{7} T^{14} \)
71 \( 1 - T + 232 T^{2} + 193 T^{3} + 30842 T^{4} + 36365 T^{5} + 3021963 T^{6} + 3211222 T^{7} + 3021963 p T^{8} + 36365 p^{2} T^{9} + 30842 p^{3} T^{10} + 193 p^{4} T^{11} + 232 p^{5} T^{12} - p^{6} T^{13} + p^{7} T^{14} \)
73 \( 1 - 18 T + 493 T^{2} - 6482 T^{3} + 103019 T^{4} - 1050182 T^{5} + 12177991 T^{6} - 98243980 T^{7} + 12177991 p T^{8} - 1050182 p^{2} T^{9} + 103019 p^{3} T^{10} - 6482 p^{4} T^{11} + 493 p^{5} T^{12} - 18 p^{6} T^{13} + p^{7} T^{14} \)
79 \( 1 + 2 T + 265 T^{2} - 12 T^{3} + 29517 T^{4} - 114626 T^{5} + 2111557 T^{6} - 15982568 T^{7} + 2111557 p T^{8} - 114626 p^{2} T^{9} + 29517 p^{3} T^{10} - 12 p^{4} T^{11} + 265 p^{5} T^{12} + 2 p^{6} T^{13} + p^{7} T^{14} \)
83 \( 1 + T + 346 T^{2} + 1005 T^{3} + 59632 T^{4} + 224715 T^{5} + 6904107 T^{6} + 24596814 T^{7} + 6904107 p T^{8} + 224715 p^{2} T^{9} + 59632 p^{3} T^{10} + 1005 p^{4} T^{11} + 346 p^{5} T^{12} + p^{6} T^{13} + p^{7} T^{14} \)
89 \( 1 + 16 T + 455 T^{2} + 5800 T^{3} + 94517 T^{4} + 1025952 T^{5} + 12462835 T^{6} + 113567824 T^{7} + 12462835 p T^{8} + 1025952 p^{2} T^{9} + 94517 p^{3} T^{10} + 5800 p^{4} T^{11} + 455 p^{5} T^{12} + 16 p^{6} T^{13} + p^{7} T^{14} \)
97 \( 1 - 26 T + 727 T^{2} - 12432 T^{3} + 210405 T^{4} - 2712758 T^{5} + 33692675 T^{6} - 338833216 T^{7} + 33692675 p T^{8} - 2712758 p^{2} T^{9} + 210405 p^{3} T^{10} - 12432 p^{4} T^{11} + 727 p^{5} T^{12} - 26 p^{6} T^{13} + p^{7} T^{14} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{14} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.67622770805796589384485524624, −3.56469555456623493417008919666, −3.45716728962821934041412097839, −3.28995321715952124922929882832, −3.23262147138743849076422661964, −3.16699766154011162100316583276, −2.99330207757845276578569083605, −2.96362940323382753446566629888, −2.85971139080819872327909040418, −2.58322594850782075950632283470, −2.44652476204408738712624434938, −2.38344957877817988169252468426, −2.26870317908304011734157154213, −2.25880784801975331959579619232, −1.74875604923383414949773294600, −1.69201810164252663486875508493, −1.59181251169268922075121550421, −1.58807710115916272239700248441, −1.38393619385922293234686809489, −1.12755690715627160119586567899, −0.970801217109611142879721505640, −0.73997415199205457410465997546, −0.72491032411176141644869221386, −0.62605450261852490887545447240, −0.20894264582800039865576681169, 0.20894264582800039865576681169, 0.62605450261852490887545447240, 0.72491032411176141644869221386, 0.73997415199205457410465997546, 0.970801217109611142879721505640, 1.12755690715627160119586567899, 1.38393619385922293234686809489, 1.58807710115916272239700248441, 1.59181251169268922075121550421, 1.69201810164252663486875508493, 1.74875604923383414949773294600, 2.25880784801975331959579619232, 2.26870317908304011734157154213, 2.38344957877817988169252468426, 2.44652476204408738712624434938, 2.58322594850782075950632283470, 2.85971139080819872327909040418, 2.96362940323382753446566629888, 2.99330207757845276578569083605, 3.16699766154011162100316583276, 3.23262147138743849076422661964, 3.28995321715952124922929882832, 3.45716728962821934041412097839, 3.56469555456623493417008919666, 3.67622770805796589384485524624

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.