Properties

Label 14-5175e7-1.1-c1e7-0-0
Degree 1414
Conductor 9.940×10259.940\times 10^{25}
Sign 11
Analytic cond. 2.05736×10112.05736\times 10^{11}
Root an. cond. 6.428266.42826
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5·7-s + 4·8-s − 12·11-s + 2·13-s + 10·14-s + 5·16-s + 11·17-s + 16·19-s − 24·22-s + 7·23-s + 4·26-s + 10·28-s + 29-s + 5·31-s + 22·34-s + 17·37-s + 32·38-s − 19·41-s + 14·43-s − 24·44-s + 14·46-s − 6·47-s + 3·49-s + 4·52-s − 15·53-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.88·7-s + 1.41·8-s − 3.61·11-s + 0.554·13-s + 2.67·14-s + 5/4·16-s + 2.66·17-s + 3.67·19-s − 5.11·22-s + 1.45·23-s + 0.784·26-s + 1.88·28-s + 0.185·29-s + 0.898·31-s + 3.77·34-s + 2.79·37-s + 5.19·38-s − 2.96·41-s + 2.13·43-s − 3.61·44-s + 2.06·46-s − 0.875·47-s + 3/7·49-s + 0.554·52-s − 2.06·53-s + ⋯

Functional equation

Λ(s)=((314514237)s/2ΓC(s)7L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{14} \cdot 5^{14} \cdot 23^{7}\right)^{s/2} \, \Gamma_{\C}(s)^{7} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((314514237)s/2ΓC(s+1/2)7L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{14} \cdot 5^{14} \cdot 23^{7}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{7} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1414
Conductor: 3145142373^{14} \cdot 5^{14} \cdot 23^{7}
Sign: 11
Analytic conductor: 2.05736×10112.05736\times 10^{11}
Root analytic conductor: 6.428266.42826
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (14, 314514237, ( :[1/2]7), 1)(14,\ 3^{14} \cdot 5^{14} \cdot 23^{7} ,\ ( \ : [1/2]^{7} ),\ 1 )

Particular Values

L(1)L(1) \approx 43.5852344943.58523449
L(12)L(\frac12) \approx 43.5852344943.58523449
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
23 (1T)7 ( 1 - T )^{7}
good2 1pT+pT2p2T3+7T4p2T5+pT63pT7+p2T8p4T9+7p3T10p6T11+p6T12p7T13+p7T14 1 - p T + p T^{2} - p^{2} T^{3} + 7 T^{4} - p^{2} T^{5} + p T^{6} - 3 p T^{7} + p^{2} T^{8} - p^{4} T^{9} + 7 p^{3} T^{10} - p^{6} T^{11} + p^{6} T^{12} - p^{7} T^{13} + p^{7} T^{14}
7 15T+22T269T3+242T4795T5+2389T66782T7+2389pT8795p2T9+242p3T1069p4T11+22p5T125p6T13+p7T14 1 - 5 T + 22 T^{2} - 69 T^{3} + 242 T^{4} - 795 T^{5} + 2389 T^{6} - 6782 T^{7} + 2389 p T^{8} - 795 p^{2} T^{9} + 242 p^{3} T^{10} - 69 p^{4} T^{11} + 22 p^{5} T^{12} - 5 p^{6} T^{13} + p^{7} T^{14}
11 1+12T+85T2+454T3+2117T4+8636T5+31593T6+106948T7+31593pT8+8636p2T9+2117p3T10+454p4T11+85p5T12+12p6T13+p7T14 1 + 12 T + 85 T^{2} + 454 T^{3} + 2117 T^{4} + 8636 T^{5} + 31593 T^{6} + 106948 T^{7} + 31593 p T^{8} + 8636 p^{2} T^{9} + 2117 p^{3} T^{10} + 454 p^{4} T^{11} + 85 p^{5} T^{12} + 12 p^{6} T^{13} + p^{7} T^{14}
13 12T+5pT2138T3+2003T44230T5+38379T671996T7+38379pT84230p2T9+2003p3T10138p4T11+5p6T122p6T13+p7T14 1 - 2 T + 5 p T^{2} - 138 T^{3} + 2003 T^{4} - 4230 T^{5} + 38379 T^{6} - 71996 T^{7} + 38379 p T^{8} - 4230 p^{2} T^{9} + 2003 p^{3} T^{10} - 138 p^{4} T^{11} + 5 p^{6} T^{12} - 2 p^{6} T^{13} + p^{7} T^{14}
17 111T+118T2847T3+5650T41797pT5+154799T6657626T7+154799pT81797p3T9+5650p3T10847p4T11+118p5T1211p6T13+p7T14 1 - 11 T + 118 T^{2} - 847 T^{3} + 5650 T^{4} - 1797 p T^{5} + 154799 T^{6} - 657626 T^{7} + 154799 p T^{8} - 1797 p^{3} T^{9} + 5650 p^{3} T^{10} - 847 p^{4} T^{11} + 118 p^{5} T^{12} - 11 p^{6} T^{13} + p^{7} T^{14}
19 116T+215T21878T3+14471T487496T5+480449T62186420T7+480449pT887496p2T9+14471p3T101878p4T11+215p5T1216p6T13+p7T14 1 - 16 T + 215 T^{2} - 1878 T^{3} + 14471 T^{4} - 87496 T^{5} + 480449 T^{6} - 2186420 T^{7} + 480449 p T^{8} - 87496 p^{2} T^{9} + 14471 p^{3} T^{10} - 1878 p^{4} T^{11} + 215 p^{5} T^{12} - 16 p^{6} T^{13} + p^{7} T^{14}
29 1T+128T2245T3+8366T417091T5+357125T6637966T7+357125pT817091p2T9+8366p3T10245p4T11+128p5T12p6T13+p7T14 1 - T + 128 T^{2} - 245 T^{3} + 8366 T^{4} - 17091 T^{5} + 357125 T^{6} - 637966 T^{7} + 357125 p T^{8} - 17091 p^{2} T^{9} + 8366 p^{3} T^{10} - 245 p^{4} T^{11} + 128 p^{5} T^{12} - p^{6} T^{13} + p^{7} T^{14}
31 15T+136T2741T3+9446T447311T5+432575T61806862T7+432575pT847311p2T9+9446p3T10741p4T11+136p5T125p6T13+p7T14 1 - 5 T + 136 T^{2} - 741 T^{3} + 9446 T^{4} - 47311 T^{5} + 432575 T^{6} - 1806862 T^{7} + 432575 p T^{8} - 47311 p^{2} T^{9} + 9446 p^{3} T^{10} - 741 p^{4} T^{11} + 136 p^{5} T^{12} - 5 p^{6} T^{13} + p^{7} T^{14}
37 117T+326T23777T3+40884T4349491T5+2661449T617243126T7+2661449pT8349491p2T9+40884p3T103777p4T11+326p5T1217p6T13+p7T14 1 - 17 T + 326 T^{2} - 3777 T^{3} + 40884 T^{4} - 349491 T^{5} + 2661449 T^{6} - 17243126 T^{7} + 2661449 p T^{8} - 349491 p^{2} T^{9} + 40884 p^{3} T^{10} - 3777 p^{4} T^{11} + 326 p^{5} T^{12} - 17 p^{6} T^{13} + p^{7} T^{14}
41 1+19T+394T2+4701T3+55916T4+481409T5+4052625T6+26296414T7+4052625pT8+481409p2T9+55916p3T10+4701p4T11+394p5T12+19p6T13+p7T14 1 + 19 T + 394 T^{2} + 4701 T^{3} + 55916 T^{4} + 481409 T^{5} + 4052625 T^{6} + 26296414 T^{7} + 4052625 p T^{8} + 481409 p^{2} T^{9} + 55916 p^{3} T^{10} + 4701 p^{4} T^{11} + 394 p^{5} T^{12} + 19 p^{6} T^{13} + p^{7} T^{14}
43 114T+225T22344T3+23113T4197474T5+1484753T610496528T7+1484753pT8197474p2T9+23113p3T102344p4T11+225p5T1214p6T13+p7T14 1 - 14 T + 225 T^{2} - 2344 T^{3} + 23113 T^{4} - 197474 T^{5} + 1484753 T^{6} - 10496528 T^{7} + 1484753 p T^{8} - 197474 p^{2} T^{9} + 23113 p^{3} T^{10} - 2344 p^{4} T^{11} + 225 p^{5} T^{12} - 14 p^{6} T^{13} + p^{7} T^{14}
47 1+6T+113T2+766T3+7517T4+50706T5+433805T6+2517332T7+433805pT8+50706p2T9+7517p3T10+766p4T11+113p5T12+6p6T13+p7T14 1 + 6 T + 113 T^{2} + 766 T^{3} + 7517 T^{4} + 50706 T^{5} + 433805 T^{6} + 2517332 T^{7} + 433805 p T^{8} + 50706 p^{2} T^{9} + 7517 p^{3} T^{10} + 766 p^{4} T^{11} + 113 p^{5} T^{12} + 6 p^{6} T^{13} + p^{7} T^{14}
53 1+15T+208T2+1457T3+14012T4+92953T5+981327T6+6221462T7+981327pT8+92953p2T9+14012p3T10+1457p4T11+208p5T12+15p6T13+p7T14 1 + 15 T + 208 T^{2} + 1457 T^{3} + 14012 T^{4} + 92953 T^{5} + 981327 T^{6} + 6221462 T^{7} + 981327 p T^{8} + 92953 p^{2} T^{9} + 14012 p^{3} T^{10} + 1457 p^{4} T^{11} + 208 p^{5} T^{12} + 15 p^{6} T^{13} + p^{7} T^{14}
59 1+11T+230T2+1599T3+18416T4+66169T5+690007T6+1175722T7+690007pT8+66169p2T9+18416p3T10+1599p4T11+230p5T12+11p6T13+p7T14 1 + 11 T + 230 T^{2} + 1599 T^{3} + 18416 T^{4} + 66169 T^{5} + 690007 T^{6} + 1175722 T^{7} + 690007 p T^{8} + 66169 p^{2} T^{9} + 18416 p^{3} T^{10} + 1599 p^{4} T^{11} + 230 p^{5} T^{12} + 11 p^{6} T^{13} + p^{7} T^{14}
61 18T+145T2942T3+15371T4104880T5+1138851T66201236T7+1138851pT8104880p2T9+15371p3T10942p4T11+145p5T128p6T13+p7T14 1 - 8 T + 145 T^{2} - 942 T^{3} + 15371 T^{4} - 104880 T^{5} + 1138851 T^{6} - 6201236 T^{7} + 1138851 p T^{8} - 104880 p^{2} T^{9} + 15371 p^{3} T^{10} - 942 p^{4} T^{11} + 145 p^{5} T^{12} - 8 p^{6} T^{13} + p^{7} T^{14}
67 1+3T+118T2+155T3+8162T4+19373T5+678793T6+2355010T7+678793pT8+19373p2T9+8162p3T10+155p4T11+118p5T12+3p6T13+p7T14 1 + 3 T + 118 T^{2} + 155 T^{3} + 8162 T^{4} + 19373 T^{5} + 678793 T^{6} + 2355010 T^{7} + 678793 p T^{8} + 19373 p^{2} T^{9} + 8162 p^{3} T^{10} + 155 p^{4} T^{11} + 118 p^{5} T^{12} + 3 p^{6} T^{13} + p^{7} T^{14}
71 1T+232T2+193T3+30842T4+36365T5+3021963T6+3211222T7+3021963pT8+36365p2T9+30842p3T10+193p4T11+232p5T12p6T13+p7T14 1 - T + 232 T^{2} + 193 T^{3} + 30842 T^{4} + 36365 T^{5} + 3021963 T^{6} + 3211222 T^{7} + 3021963 p T^{8} + 36365 p^{2} T^{9} + 30842 p^{3} T^{10} + 193 p^{4} T^{11} + 232 p^{5} T^{12} - p^{6} T^{13} + p^{7} T^{14}
73 118T+493T26482T3+103019T41050182T5+12177991T698243980T7+12177991pT81050182p2T9+103019p3T106482p4T11+493p5T1218p6T13+p7T14 1 - 18 T + 493 T^{2} - 6482 T^{3} + 103019 T^{4} - 1050182 T^{5} + 12177991 T^{6} - 98243980 T^{7} + 12177991 p T^{8} - 1050182 p^{2} T^{9} + 103019 p^{3} T^{10} - 6482 p^{4} T^{11} + 493 p^{5} T^{12} - 18 p^{6} T^{13} + p^{7} T^{14}
79 1+2T+265T212T3+29517T4114626T5+2111557T615982568T7+2111557pT8114626p2T9+29517p3T1012p4T11+265p5T12+2p6T13+p7T14 1 + 2 T + 265 T^{2} - 12 T^{3} + 29517 T^{4} - 114626 T^{5} + 2111557 T^{6} - 15982568 T^{7} + 2111557 p T^{8} - 114626 p^{2} T^{9} + 29517 p^{3} T^{10} - 12 p^{4} T^{11} + 265 p^{5} T^{12} + 2 p^{6} T^{13} + p^{7} T^{14}
83 1+T+346T2+1005T3+59632T4+224715T5+6904107T6+24596814T7+6904107pT8+224715p2T9+59632p3T10+1005p4T11+346p5T12+p6T13+p7T14 1 + T + 346 T^{2} + 1005 T^{3} + 59632 T^{4} + 224715 T^{5} + 6904107 T^{6} + 24596814 T^{7} + 6904107 p T^{8} + 224715 p^{2} T^{9} + 59632 p^{3} T^{10} + 1005 p^{4} T^{11} + 346 p^{5} T^{12} + p^{6} T^{13} + p^{7} T^{14}
89 1+16T+455T2+5800T3+94517T4+1025952T5+12462835T6+113567824T7+12462835pT8+1025952p2T9+94517p3T10+5800p4T11+455p5T12+16p6T13+p7T14 1 + 16 T + 455 T^{2} + 5800 T^{3} + 94517 T^{4} + 1025952 T^{5} + 12462835 T^{6} + 113567824 T^{7} + 12462835 p T^{8} + 1025952 p^{2} T^{9} + 94517 p^{3} T^{10} + 5800 p^{4} T^{11} + 455 p^{5} T^{12} + 16 p^{6} T^{13} + p^{7} T^{14}
97 126T+727T212432T3+210405T42712758T5+33692675T6338833216T7+33692675pT82712758p2T9+210405p3T1012432p4T11+727p5T1226p6T13+p7T14 1 - 26 T + 727 T^{2} - 12432 T^{3} + 210405 T^{4} - 2712758 T^{5} + 33692675 T^{6} - 338833216 T^{7} + 33692675 p T^{8} - 2712758 p^{2} T^{9} + 210405 p^{3} T^{10} - 12432 p^{4} T^{11} + 727 p^{5} T^{12} - 26 p^{6} T^{13} + p^{7} T^{14}
show more
show less
   L(s)=p j=114(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{14} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.67622770805796589384485524624, −3.56469555456623493417008919666, −3.45716728962821934041412097839, −3.28995321715952124922929882832, −3.23262147138743849076422661964, −3.16699766154011162100316583276, −2.99330207757845276578569083605, −2.96362940323382753446566629888, −2.85971139080819872327909040418, −2.58322594850782075950632283470, −2.44652476204408738712624434938, −2.38344957877817988169252468426, −2.26870317908304011734157154213, −2.25880784801975331959579619232, −1.74875604923383414949773294600, −1.69201810164252663486875508493, −1.59181251169268922075121550421, −1.58807710115916272239700248441, −1.38393619385922293234686809489, −1.12755690715627160119586567899, −0.970801217109611142879721505640, −0.73997415199205457410465997546, −0.72491032411176141644869221386, −0.62605450261852490887545447240, −0.20894264582800039865576681169, 0.20894264582800039865576681169, 0.62605450261852490887545447240, 0.72491032411176141644869221386, 0.73997415199205457410465997546, 0.970801217109611142879721505640, 1.12755690715627160119586567899, 1.38393619385922293234686809489, 1.58807710115916272239700248441, 1.59181251169268922075121550421, 1.69201810164252663486875508493, 1.74875604923383414949773294600, 2.25880784801975331959579619232, 2.26870317908304011734157154213, 2.38344957877817988169252468426, 2.44652476204408738712624434938, 2.58322594850782075950632283470, 2.85971139080819872327909040418, 2.96362940323382753446566629888, 2.99330207757845276578569083605, 3.16699766154011162100316583276, 3.23262147138743849076422661964, 3.28995321715952124922929882832, 3.45716728962821934041412097839, 3.56469555456623493417008919666, 3.67622770805796589384485524624

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.