Properties

Label 16-1472e8-1.1-c0e8-0-0
Degree $16$
Conductor $2.204\times 10^{25}$
Sign $1$
Analytic cond. $0.0848241$
Root an. cond. $0.857101$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·9-s − 8·47-s + 8·71-s + 10·81-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  − 4·9-s − 8·47-s + 8·71-s + 10·81-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 23^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 23^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 23^{8}\)
Sign: $1$
Analytic conductor: \(0.0848241\)
Root analytic conductor: \(0.857101\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 23^{8} ,\ ( \ : [0]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4058042085\)
\(L(\frac12)\) \(\approx\) \(0.4058042085\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T^{8} \)
23 \( 1 + T^{8} \)
good3 \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \)
5 \( 1 + T^{16} \)
7 \( ( 1 + T^{8} )^{2} \)
11 \( 1 + T^{16} \)
13 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
17 \( ( 1 + T^{4} )^{4} \)
19 \( 1 + T^{16} \)
29 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
31 \( ( 1 + T^{8} )^{2} \)
37 \( 1 + T^{16} \)
41 \( ( 1 + T^{8} )^{2} \)
43 \( 1 + T^{16} \)
47 \( ( 1 + T )^{8}( 1 + T^{2} )^{4} \)
53 \( 1 + T^{16} \)
59 \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \)
61 \( 1 + T^{16} \)
67 \( 1 + T^{16} \)
71 \( ( 1 - T )^{8}( 1 + T^{4} )^{2} \)
73 \( ( 1 + T^{8} )^{2} \)
79 \( ( 1 + T^{4} )^{4} \)
83 \( 1 + T^{16} \)
89 \( ( 1 + T^{8} )^{2} \)
97 \( ( 1 + T^{2} )^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.27443908926367345796450646942, −3.87651153937540560657556111275, −3.81626626578338268003673427967, −3.75772969322521852975294375082, −3.68110103751905367140933452829, −3.54444734333588368451289385143, −3.54428768663657245820258636813, −3.49294910232623973910955207440, −3.43463789958931329595887662979, −3.00989078808111389277187229653, −2.92855859203135740840330551936, −2.73832121103695529915885000009, −2.68797926960873314046303226804, −2.68534822495083123276756650310, −2.51981893443878802941805110984, −2.41518409875495160665413968061, −2.02955368390360769261372541155, −2.01500556834458439661392516535, −1.79236887342289171329388478872, −1.78986113444135053787637666968, −1.41711752381582801047826787520, −1.38443474047012899719733998476, −0.990964441630214784443484993078, −0.58323883456524963885411174514, −0.45448491946366456762583622661, 0.45448491946366456762583622661, 0.58323883456524963885411174514, 0.990964441630214784443484993078, 1.38443474047012899719733998476, 1.41711752381582801047826787520, 1.78986113444135053787637666968, 1.79236887342289171329388478872, 2.01500556834458439661392516535, 2.02955368390360769261372541155, 2.41518409875495160665413968061, 2.51981893443878802941805110984, 2.68534822495083123276756650310, 2.68797926960873314046303226804, 2.73832121103695529915885000009, 2.92855859203135740840330551936, 3.00989078808111389277187229653, 3.43463789958931329595887662979, 3.49294910232623973910955207440, 3.54428768663657245820258636813, 3.54444734333588368451289385143, 3.68110103751905367140933452829, 3.75772969322521852975294375082, 3.81626626578338268003673427967, 3.87651153937540560657556111275, 4.27443908926367345796450646942

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.