L(s) = 1 | + 4·9-s + 4·25-s − 24·29-s − 16·49-s − 8·61-s + 16·79-s + 16·81-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | + 4/3·9-s + 4/5·25-s − 4.45·29-s − 2.28·49-s − 1.02·61-s + 1.80·79-s + 16/9·81-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯ |
Λ(s)=(=((216⋅58⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((216⋅58⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.693959994 |
L(21) |
≈ |
1.693959994 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | (1−2T2+p2T4)2 |
| 13 | (1−2T2+p2T4)2 |
good | 3 | (1−2T2−2T4−2p2T6+p4T8)2 |
| 7 | (1+8T2+30T4+8p2T6+p4T8)2 |
| 11 | (1−2pT2+342T4−2p3T6+p4T8)2 |
| 17 | (1−28T2+438T4−28p2T6+p4T8)2 |
| 19 | (1−46T2+1062T4−46p2T6+p4T8)2 |
| 23 | (1−58T2+1710T4−58p2T6+p4T8)2 |
| 29 | (1+6T+46T2+6pT3+p2T4)4 |
| 31 | (1−22T2+342T4−22p2T6+p4T8)2 |
| 37 | (1+80T2+3582T4+80p2T6+p4T8)2 |
| 41 | (1−76T2+4470T4−76p2T6+p4T8)2 |
| 43 | (1−106T2+6318T4−106p2T6+p4T8)2 |
| 47 | (1+56T2+4446T4+56p2T6+p4T8)2 |
| 53 | (1−172T2+12678T4−172p2T6+p4T8)2 |
| 59 | (1−46T2+7302T4−46p2T6+p4T8)2 |
| 61 | (1+2T+102T2+2pT3+p2T4)4 |
| 67 | (1+200T2+18222T4+200p2T6+p4T8)2 |
| 71 | (1−238T2+23718T4−238p2T6+p4T8)2 |
| 73 | (1+224T2+22446T4+224p2T6+p4T8)2 |
| 79 | (1−4T+78T2−4pT3+p2T4)4 |
| 83 | (1+56T2−4338T4+56p2T6+p4T8)2 |
| 89 | (1−50T2+p2T4)4 |
| 97 | (1+236T2+27366T4+236p2T6+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.49405522674696637756099548560, −5.14888512411359633695121673671, −5.14106146244585628738676197479, −4.82721571351949580683652488741, −4.73355821031781078324458696033, −4.69462248036237674970182723789, −4.57132868850683820827067915798, −4.52780398632788205743878440926, −4.03780666551540051716002148793, −3.90613938289059777092992060759, −3.85557078244062818850473660291, −3.60092490133216161012012192919, −3.51061612675524548810961982939, −3.40129154430712144561358409556, −3.20968770176302602339701251735, −3.07030047949319203839179817174, −2.57360796458670893059355337453, −2.51728384451142389207985567391, −2.17168941959692474062811147196, −2.11739811192374868269543172472, −1.74778547814625556394771400359, −1.54954256022427537684495640079, −1.52491595230567678578685632686, −0.956121926463777211496794486991, −0.39571677344501970876545734483,
0.39571677344501970876545734483, 0.956121926463777211496794486991, 1.52491595230567678578685632686, 1.54954256022427537684495640079, 1.74778547814625556394771400359, 2.11739811192374868269543172472, 2.17168941959692474062811147196, 2.51728384451142389207985567391, 2.57360796458670893059355337453, 3.07030047949319203839179817174, 3.20968770176302602339701251735, 3.40129154430712144561358409556, 3.51061612675524548810961982939, 3.60092490133216161012012192919, 3.85557078244062818850473660291, 3.90613938289059777092992060759, 4.03780666551540051716002148793, 4.52780398632788205743878440926, 4.57132868850683820827067915798, 4.69462248036237674970182723789, 4.73355821031781078324458696033, 4.82721571351949580683652488741, 5.14106146244585628738676197479, 5.14888512411359633695121673671, 5.49405522674696637756099548560
Plot not available for L-functions of degree greater than 10.