Properties

Label 260.2.d.a.129.5
Level 260260
Weight 22
Character 260.129
Analytic conductor 2.0762.076
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,2,Mod(129,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.129");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 260=22513 260 = 2^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 260.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.076110452552.07611045255
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12745506816.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+16x6+79x4+120x2+9 x^{8} + 16x^{6} + 79x^{4} + 120x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 25 2^{5}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 129.5
Root 1.65070i1.65070i of defining polynomial
Character χ\chi == 260.129
Dual form 260.2.d.a.129.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.646084iq3+(1.73205+1.41421i)q5+0.913701q7+2.58258q9+3.94748iq11+(2.64575+2.44949i)q13+(0.9137011.11905i)q15+6.19115iq17+1.11905iq19+0.590327iq215.54506iq23+(1.000004.89898i)q25+3.60681iq27+1.58258q299.60433iq312.55040q33+(1.58258+1.29217i)q35+7.84190q37+(1.582581.70938i)q39+5.06653iq416.83723iq43+(4.47315+3.65231i)q45+9.66930q476.16515q494.00000q51+1.29217iq53+(5.582586.83723i)q550.723000q579.01400iq595.58258q61+2.35970q63+(1.118477.98430i)q65+7.84190q67+3.58258q696.77590iq71+7.84190q73+(3.16515+0.646084i)q75+3.60681iq777.16515q79+5.41742q8116.5975q83+(8.7556010.7234i)q85+1.02248iq87+11.3137iq89+(2.41742+2.23810i)q91+6.20520q93+(1.582581.93825i)q95+1.63670q97+10.1947iq99+O(q100)q+0.646084i q^{3} +(-1.73205 + 1.41421i) q^{5} +0.913701 q^{7} +2.58258 q^{9} +3.94748i q^{11} +(-2.64575 + 2.44949i) q^{13} +(-0.913701 - 1.11905i) q^{15} +6.19115i q^{17} +1.11905i q^{19} +0.590327i q^{21} -5.54506i q^{23} +(1.00000 - 4.89898i) q^{25} +3.60681i q^{27} +1.58258 q^{29} -9.60433i q^{31} -2.55040 q^{33} +(-1.58258 + 1.29217i) q^{35} +7.84190 q^{37} +(-1.58258 - 1.70938i) q^{39} +5.06653i q^{41} -6.83723i q^{43} +(-4.47315 + 3.65231i) q^{45} +9.66930 q^{47} -6.16515 q^{49} -4.00000 q^{51} +1.29217i q^{53} +(-5.58258 - 6.83723i) q^{55} -0.723000 q^{57} -9.01400i q^{59} -5.58258 q^{61} +2.35970 q^{63} +(1.11847 - 7.98430i) q^{65} +7.84190 q^{67} +3.58258 q^{69} -6.77590i q^{71} +7.84190 q^{73} +(3.16515 + 0.646084i) q^{75} +3.60681i q^{77} -7.16515 q^{79} +5.41742 q^{81} -16.5975 q^{83} +(-8.75560 - 10.7234i) q^{85} +1.02248i q^{87} +11.3137i q^{89} +(-2.41742 + 2.23810i) q^{91} +6.20520 q^{93} +(-1.58258 - 1.93825i) q^{95} +1.63670 q^{97} +10.1947i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q16q9+8q2524q29+24q35+24q39+24q4932q518q558q618q6948q75+16q79+80q8156q91+24q95+O(q100) 8 q - 16 q^{9} + 8 q^{25} - 24 q^{29} + 24 q^{35} + 24 q^{39} + 24 q^{49} - 32 q^{51} - 8 q^{55} - 8 q^{61} - 8 q^{69} - 48 q^{75} + 16 q^{79} + 80 q^{81} - 56 q^{91} + 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/260Z)×\left(\mathbb{Z}/260\mathbb{Z}\right)^\times.

nn 4141 131131 157157
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.646084i 0.373017i 0.982453 + 0.186508i 0.0597171π0.0597171\pi
−0.982453 + 0.186508i 0.940283π0.940283\pi
44 0 0
55 −1.73205 + 1.41421i −0.774597 + 0.632456i
66 0 0
77 0.913701 0.345346 0.172673 0.984979i 0.444760π-0.444760\pi
0.172673 + 0.984979i 0.444760π0.444760\pi
88 0 0
99 2.58258 0.860859
1010 0 0
1111 3.94748i 1.19021i 0.803648 + 0.595105i 0.202889π0.202889\pi
−0.803648 + 0.595105i 0.797111π0.797111\pi
1212 0 0
1313 −2.64575 + 2.44949i −0.733799 + 0.679366i
1414 0 0
1515 −0.913701 1.11905i −0.235916 0.288937i
1616 0 0
1717 6.19115i 1.50157i 0.660545 + 0.750787i 0.270325π0.270325\pi
−0.660545 + 0.750787i 0.729675π0.729675\pi
1818 0 0
1919 1.11905i 0.256728i 0.991727 + 0.128364i 0.0409725π0.0409725\pi
−0.991727 + 0.128364i 0.959027π0.959027\pi
2020 0 0
2121 0.590327i 0.128820i
2222 0 0
2323 5.54506i 1.15623i −0.815957 0.578113i 0.803789π-0.803789\pi
0.815957 0.578113i 0.196211π-0.196211\pi
2424 0 0
2525 1.00000 4.89898i 0.200000 0.979796i
2626 0 0
2727 3.60681i 0.694131i
2828 0 0
2929 1.58258 0.293877 0.146938 0.989146i 0.453058π-0.453058\pi
0.146938 + 0.989146i 0.453058π0.453058\pi
3030 0 0
3131 9.60433i 1.72499i −0.506067 0.862494i 0.668901π-0.668901\pi
0.506067 0.862494i 0.331099π-0.331099\pi
3232 0 0
3333 −2.55040 −0.443968
3434 0 0
3535 −1.58258 + 1.29217i −0.267504 + 0.218416i
3636 0 0
3737 7.84190 1.28920 0.644601 0.764520i 0.277024π-0.277024\pi
0.644601 + 0.764520i 0.277024π0.277024\pi
3838 0 0
3939 −1.58258 1.70938i −0.253415 0.273719i
4040 0 0
4141 5.06653i 0.791259i 0.918410 + 0.395629i 0.129473π0.129473\pi
−0.918410 + 0.395629i 0.870527π0.870527\pi
4242 0 0
4343 6.83723i 1.04267i −0.853353 0.521334i 0.825435π-0.825435\pi
0.853353 0.521334i 0.174565π-0.174565\pi
4444 0 0
4545 −4.47315 + 3.65231i −0.666818 + 0.544455i
4646 0 0
4747 9.66930 1.41041 0.705207 0.709002i 0.250854π-0.250854\pi
0.705207 + 0.709002i 0.250854π0.250854\pi
4848 0 0
4949 −6.16515 −0.880736
5050 0 0
5151 −4.00000 −0.560112
5252 0 0
5353 1.29217i 0.177493i 0.996054 + 0.0887464i 0.0282861π0.0282861\pi
−0.996054 + 0.0887464i 0.971714π0.971714\pi
5454 0 0
5555 −5.58258 6.83723i −0.752754 0.921932i
5656 0 0
5757 −0.723000 −0.0957637
5858 0 0
5959 9.01400i 1.17352i −0.809760 0.586762i 0.800403π-0.800403\pi
0.809760 0.586762i 0.199597π-0.199597\pi
6060 0 0
6161 −5.58258 −0.714776 −0.357388 0.933956i 0.616333π-0.616333\pi
−0.357388 + 0.933956i 0.616333π0.616333\pi
6262 0 0
6363 2.35970 0.297294
6464 0 0
6565 1.11847 7.98430i 0.138730 0.990330i
6666 0 0
6767 7.84190 0.958041 0.479021 0.877804i 0.340992π-0.340992\pi
0.479021 + 0.877804i 0.340992π0.340992\pi
6868 0 0
6969 3.58258 0.431291
7070 0 0
7171 6.77590i 0.804152i −0.915606 0.402076i 0.868289π-0.868289\pi
0.915606 0.402076i 0.131711π-0.131711\pi
7272 0 0
7373 7.84190 0.917825 0.458913 0.888481i 0.348239π-0.348239\pi
0.458913 + 0.888481i 0.348239π0.348239\pi
7474 0 0
7575 3.16515 + 0.646084i 0.365480 + 0.0746033i
7676 0 0
7777 3.60681i 0.411034i
7878 0 0
7979 −7.16515 −0.806143 −0.403071 0.915169i 0.632057π-0.632057\pi
−0.403071 + 0.915169i 0.632057π0.632057\pi
8080 0 0
8181 5.41742 0.601936
8282 0 0
8383 −16.5975 −1.82181 −0.910907 0.412613i 0.864616π-0.864616\pi
−0.910907 + 0.412613i 0.864616π0.864616\pi
8484 0 0
8585 −8.75560 10.7234i −0.949679 1.16311i
8686 0 0
8787 1.02248i 0.109621i
8888 0 0
8989 11.3137i 1.19925i 0.800281 + 0.599625i 0.204684π0.204684\pi
−0.800281 + 0.599625i 0.795316π0.795316\pi
9090 0 0
9191 −2.41742 + 2.23810i −0.253415 + 0.234617i
9292 0 0
9393 6.20520 0.643450
9494 0 0
9595 −1.58258 1.93825i −0.162369 0.198860i
9696 0 0
9797 1.63670 0.166182 0.0830909 0.996542i 0.473521π-0.473521\pi
0.0830909 + 0.996542i 0.473521π0.473521\pi
9898 0 0
9999 10.1947i 1.02460i
100100 0 0
101101 9.16515 0.911967 0.455983 0.889988i 0.349288π-0.349288\pi
0.455983 + 0.889988i 0.349288π0.349288\pi
102102 0 0
103103 1.93825i 0.190982i 0.995430 + 0.0954908i 0.0304420π0.0304420\pi
−0.995430 + 0.0954908i 0.969558π0.969558\pi
104104 0 0
105105 −0.834849 1.02248i −0.0814729 0.0997835i
106106 0 0
107107 8.12940i 0.785899i 0.919560 + 0.392949i 0.128545π0.128545\pi
−0.919560 + 0.392949i 0.871455π0.871455\pi
108108 0 0
109109 8.48528i 0.812743i −0.913708 0.406371i 0.866794π-0.866794\pi
0.913708 0.406371i 0.133206π-0.133206\pi
110110 0 0
111111 5.06653i 0.480893i
112112 0 0
113113 3.60681i 0.339300i −0.985504 0.169650i 0.945736π-0.945736\pi
0.985504 0.169650i 0.0542638π-0.0542638\pi
114114 0 0
115115 7.84190 + 9.60433i 0.731261 + 0.895609i
116116 0 0
117117 −6.83285 + 6.32599i −0.631697 + 0.584838i
118118 0 0
119119 5.65685i 0.518563i
120120 0 0
121121 −4.58258 −0.416598
122122 0 0
123123 −3.27340 −0.295153
124124 0 0
125125 5.19615 + 9.89949i 0.464758 + 0.885438i
126126 0 0
127127 11.7362i 1.04142i 0.853734 + 0.520710i 0.174333π0.174333\pi
−0.853734 + 0.520710i 0.825667π0.825667\pi
128128 0 0
129129 4.41742 0.388933
130130 0 0
131131 15.1652 1.32499 0.662493 0.749068i 0.269499π-0.269499\pi
0.662493 + 0.749068i 0.269499π0.269499\pi
132132 0 0
133133 1.02248i 0.0886600i
134134 0 0
135135 −5.10080 6.24718i −0.439007 0.537672i
136136 0 0
137137 −10.3923 −0.887875 −0.443937 0.896058i 0.646419π-0.646419\pi
−0.443937 + 0.896058i 0.646419π0.646419\pi
138138 0 0
139139 11.1652 0.947016 0.473508 0.880790i 0.342988π-0.342988\pi
0.473508 + 0.880790i 0.342988π0.342988\pi
140140 0 0
141141 6.24718i 0.526108i
142142 0 0
143143 −9.66930 10.4440i −0.808588 0.873375i
144144 0 0
145145 −2.74110 + 2.23810i −0.227636 + 0.185864i
146146 0 0
147147 3.98320i 0.328529i
148148 0 0
149149 2.82843i 0.231714i 0.993266 + 0.115857i 0.0369614π0.0369614\pi
−0.993266 + 0.115857i 0.963039π0.963039\pi
150150 0 0
151151 3.35715i 0.273201i 0.990626 + 0.136600i 0.0436177π0.0436177\pi
−0.990626 + 0.136600i 0.956382π0.956382\pi
152152 0 0
153153 15.9891i 1.29264i
154154 0 0
155155 13.5826 + 16.6352i 1.09098 + 1.33617i
156156 0 0
157157 22.4499i 1.79170i −0.444356 0.895850i 0.646567π-0.646567\pi
0.444356 0.895850i 0.353433π-0.353433\pi
158158 0 0
159159 −0.834849 −0.0662078
160160 0 0
161161 5.06653i 0.399298i
162162 0 0
163163 −6.01450 −0.471092 −0.235546 0.971863i 0.575688π-0.575688\pi
−0.235546 + 0.971863i 0.575688π0.575688\pi
164164 0 0
165165 4.41742 3.60681i 0.343896 0.280790i
166166 0 0
167167 16.5975 1.28435 0.642177 0.766557i 0.278031π-0.278031\pi
0.642177 + 0.766557i 0.278031π0.278031\pi
168168 0 0
169169 1.00000 12.9615i 0.0769231 0.997037i
170170 0 0
171171 2.89003i 0.221006i
172172 0 0
173173 11.0901i 0.843167i 0.906790 + 0.421583i 0.138526π0.138526\pi
−0.906790 + 0.421583i 0.861474π0.861474\pi
174174 0 0
175175 0.913701 4.47620i 0.0690693 0.338369i
176176 0 0
177177 5.82380 0.437744
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −14.4174 −1.07164 −0.535819 0.844333i 0.679997π-0.679997\pi
−0.535819 + 0.844333i 0.679997π0.679997\pi
182182 0 0
183183 3.60681i 0.266623i
184184 0 0
185185 −13.5826 + 11.0901i −0.998611 + 0.815362i
186186 0 0
187187 −24.4394 −1.78719
188188 0 0
189189 3.29555i 0.239716i
190190 0 0
191191 −12.0000 −0.868290 −0.434145 0.900843i 0.642949π-0.642949\pi
−0.434145 + 0.900843i 0.642949π0.642949\pi
192192 0 0
193193 20.9753 1.50984 0.754918 0.655819i 0.227677π-0.227677\pi
0.754918 + 0.655819i 0.227677π0.227677\pi
194194 0 0
195195 5.15853 + 0.722628i 0.369410 + 0.0517485i
196196 0 0
197197 −8.94630 −0.637398 −0.318699 0.947856i 0.603246π-0.603246\pi
−0.318699 + 0.947856i 0.603246π0.603246\pi
198198 0 0
199199 −4.00000 −0.283552 −0.141776 0.989899i 0.545281π-0.545281\pi
−0.141776 + 0.989899i 0.545281π0.545281\pi
200200 0 0
201201 5.06653i 0.357365i
202202 0 0
203203 1.44600 0.101489
204204 0 0
205205 −7.16515 8.77548i −0.500436 0.612906i
206206 0 0
207207 14.3205i 0.995347i
208208 0 0
209209 −4.41742 −0.305560
210210 0 0
211211 20.0000 1.37686 0.688428 0.725304i 0.258301π-0.258301\pi
0.688428 + 0.725304i 0.258301π0.258301\pi
212212 0 0
213213 4.37780 0.299962
214214 0 0
215215 9.66930 + 11.8424i 0.659441 + 0.807647i
216216 0 0
217217 8.77548i 0.595719i
218218 0 0
219219 5.06653i 0.342364i
220220 0 0
221221 −15.1652 16.3802i −1.02012 1.10185i
222222 0 0
223223 7.84190 0.525133 0.262566 0.964914i 0.415431π-0.415431\pi
0.262566 + 0.964914i 0.415431π0.415431\pi
224224 0 0
225225 2.58258 12.6520i 0.172172 0.843466i
226226 0 0
227227 −11.1153 −0.737749 −0.368874 0.929479i 0.620257π-0.620257\pi
−0.368874 + 0.929479i 0.620257π0.620257\pi
228228 0 0
229229 2.23810i 0.147898i 0.997262 + 0.0739489i 0.0235602π0.0235602\pi
−0.997262 + 0.0739489i 0.976440π0.976440\pi
230230 0 0
231231 −2.33030 −0.153323
232232 0 0
233233 2.58434i 0.169305i −0.996411 0.0846527i 0.973022π-0.973022\pi
0.996411 0.0846527i 0.0269781π-0.0269781\pi
234234 0 0
235235 −16.7477 + 13.6745i −1.09250 + 0.892024i
236236 0 0
237237 4.62929i 0.300705i
238238 0 0
239239 10.7850i 0.697623i −0.937193 0.348811i 0.886585π-0.886585\pi
0.937193 0.348811i 0.113415π-0.113415\pi
240240 0 0
241241 27.6939i 1.78392i −0.452111 0.891962i 0.649329π-0.649329\pi
0.452111 0.891962i 0.350671π-0.350671\pi
242242 0 0
243243 14.3205i 0.918663i
244244 0 0
245245 10.6784 8.71884i 0.682215 0.557026i
246246 0 0
247247 −2.74110 2.96073i −0.174412 0.188387i
248248 0 0
249249 10.7234i 0.679567i
250250 0 0
251251 3.16515 0.199783 0.0998913 0.994998i 0.468150π-0.468150\pi
0.0998913 + 0.994998i 0.468150π0.468150\pi
252252 0 0
253253 21.8890 1.37615
254254 0 0
255255 6.92820 5.65685i 0.433861 0.354246i
256256 0 0
257257 22.1803i 1.38357i −0.722105 0.691783i 0.756825π-0.756825\pi
0.722105 0.691783i 0.243175π-0.243175\pi
258258 0 0
259259 7.16515 0.445221
260260 0 0
261261 4.08712 0.252986
262262 0 0
263263 20.2420i 1.24818i −0.781354 0.624088i 0.785471π-0.785471\pi
0.781354 0.624088i 0.214529π-0.214529\pi
264264 0 0
265265 −1.82740 2.23810i −0.112256 0.137485i
266266 0 0
267267 −7.30960 −0.447341
268268 0 0
269269 −9.16515 −0.558809 −0.279405 0.960173i 0.590137π-0.590137\pi
−0.279405 + 0.960173i 0.590137π0.590137\pi
270270 0 0
271271 15.8515i 0.962911i 0.876471 + 0.481455i 0.159892π0.159892\pi
−0.876471 + 0.481455i 0.840108π0.840108\pi
272272 0 0
273273 −1.44600 1.56186i −0.0875159 0.0945280i
274274 0 0
275275 19.3386 + 3.94748i 1.16616 + 0.238042i
276276 0 0
277277 5.92146i 0.355786i −0.984050 0.177893i 0.943072π-0.943072\pi
0.984050 0.177893i 0.0569281π-0.0569281\pi
278278 0 0
279279 24.8039i 1.48497i
280280 0 0
281281 26.5133i 1.58165i 0.612042 + 0.790825i 0.290348π0.290348\pi
−0.612042 + 0.790825i 0.709652π0.709652\pi
282282 0 0
283283 6.83723i 0.406431i −0.979134 0.203216i 0.934861π-0.934861\pi
0.979134 0.203216i 0.0651392π-0.0651392\pi
284284 0 0
285285 1.25227 1.02248i 0.0741782 0.0605663i
286286 0 0
287287 4.62929i 0.273258i
288288 0 0
289289 −21.3303 −1.25472
290290 0 0
291291 1.05745i 0.0619886i
292292 0 0
293293 −9.66930 −0.564887 −0.282443 0.959284i 0.591145π-0.591145\pi
−0.282443 + 0.959284i 0.591145π0.591145\pi
294294 0 0
295295 12.7477 + 15.6127i 0.742201 + 0.909007i
296296 0 0
297297 −14.2378 −0.826161
298298 0 0
299299 13.5826 + 14.6709i 0.785501 + 0.848438i
300300 0 0
301301 6.24718i 0.360082i
302302 0 0
303303 5.92146i 0.340179i
304304 0 0
305305 9.66930 7.89495i 0.553663 0.452064i
306306 0 0
307307 −18.4249 −1.05157 −0.525783 0.850619i 0.676227π-0.676227\pi
−0.525783 + 0.850619i 0.676227π0.676227\pi
308308 0 0
309309 −1.25227 −0.0712393
310310 0 0
311311 −30.3303 −1.71987 −0.859937 0.510400i 0.829497π-0.829497\pi
−0.859937 + 0.510400i 0.829497π0.829497\pi
312312 0 0
313313 18.5734i 1.04983i 0.851154 + 0.524916i 0.175903π0.175903\pi
−0.851154 + 0.524916i 0.824097π0.824097\pi
314314 0 0
315315 −4.08712 + 3.33712i −0.230283 + 0.188025i
316316 0 0
317317 4.18710 0.235171 0.117586 0.993063i 0.462485π-0.462485\pi
0.117586 + 0.993063i 0.462485π0.462485\pi
318318 0 0
319319 6.24718i 0.349775i
320320 0 0
321321 −5.25227 −0.293153
322322 0 0
323323 −6.92820 −0.385496
324324 0 0
325325 9.35425 + 15.4110i 0.518880 + 0.854847i
326326 0 0
327327 5.48220 0.303167
328328 0 0
329329 8.83485 0.487081
330330 0 0
331331 5.12813i 0.281868i 0.990019 + 0.140934i 0.0450105π0.0450105\pi
−0.990019 + 0.140934i 0.954990π0.954990\pi
332332 0 0
333333 20.2523 1.10982
334334 0 0
335335 −13.5826 + 11.0901i −0.742095 + 0.605918i
336336 0 0
337337 1.02248i 0.0556978i −0.999612 0.0278489i 0.991134π-0.991134\pi
0.999612 0.0278489i 0.00886573π-0.00886573\pi
338338 0 0
339339 2.33030 0.126565
340340 0 0
341341 37.9129 2.05310
342342 0 0
343343 −12.0290 −0.649505
344344 0 0
345345 −6.20520 + 5.06653i −0.334077 + 0.272773i
346346 0 0
347347 24.1185i 1.29475i −0.762172 0.647375i 0.775867π-0.775867\pi
0.762172 0.647375i 0.224133π-0.224133\pi
348348 0 0
349349 6.71430i 0.359408i −0.983721 0.179704i 0.942486π-0.942486\pi
0.983721 0.179704i 0.0575140π-0.0575140\pi
350350 0 0
351351 −8.83485 9.54273i −0.471569 0.509353i
352352 0 0
353353 −9.66930 −0.514645 −0.257323 0.966326i 0.582840π-0.582840\pi
−0.257323 + 0.966326i 0.582840π0.582840\pi
354354 0 0
355355 9.58258 + 11.7362i 0.508590 + 0.622893i
356356 0 0
357357 −3.65480 −0.193433
358358 0 0
359359 2.29970i 0.121374i −0.998157 0.0606869i 0.980671π-0.980671\pi
0.998157 0.0606869i 0.0193291π-0.0193291\pi
360360 0 0
361361 17.7477 0.934091
362362 0 0
363363 2.96073i 0.155398i
364364 0 0
365365 −13.5826 + 11.0901i −0.710945 + 0.580484i
366366 0 0
367367 1.93825i 0.101176i 0.998720 + 0.0505880i 0.0161095π0.0161095\pi
−0.998720 + 0.0505880i 0.983890π0.983890\pi
368368 0 0
369369 13.0847i 0.681162i
370370 0 0
371371 1.18065i 0.0612965i
372372 0 0
373373 14.6969i 0.760979i 0.924785 + 0.380489i 0.124244π0.124244\pi
−0.924785 + 0.380489i 0.875756π0.875756\pi
374374 0 0
375375 −6.39590 + 3.35715i −0.330283 + 0.173362i
376376 0 0
377377 −4.18710 + 3.87650i −0.215647 + 0.199650i
378378 0 0
379379 31.0511i 1.59499i 0.603327 + 0.797494i 0.293841π0.293841\pi
−0.603327 + 0.797494i 0.706159π0.706159\pi
380380 0 0
381381 −7.58258 −0.388467
382382 0 0
383383 −29.0079 −1.48224 −0.741118 0.671375i 0.765704π-0.765704\pi
−0.741118 + 0.671375i 0.765704π0.765704\pi
384384 0 0
385385 −5.10080 6.24718i −0.259961 0.318386i
386386 0 0
387387 17.6577i 0.897590i
388388 0 0
389389 18.0000 0.912636 0.456318 0.889817i 0.349168π-0.349168\pi
0.456318 + 0.889817i 0.349168π0.349168\pi
390390 0 0
391391 34.3303 1.73616
392392 0 0
393393 9.79796i 0.494242i
394394 0 0
395395 12.4104 10.1331i 0.624435 0.509849i
396396 0 0
397397 −19.8709 −0.997292 −0.498646 0.866806i 0.666169π-0.666169\pi
−0.498646 + 0.866806i 0.666169π0.666169\pi
398398 0 0
399399 −0.660606 −0.0330716
400400 0 0
401401 22.6274i 1.12996i −0.825105 0.564980i 0.808884π-0.808884\pi
0.825105 0.564980i 0.191116π-0.191116\pi
402402 0 0
403403 23.5257 + 25.4107i 1.17190 + 1.26580i
404404 0 0
405405 −9.38325 + 7.66139i −0.466258 + 0.380698i
406406 0 0
407407 30.9557i 1.53442i
408408 0 0
409409 32.1701i 1.59071i 0.606143 + 0.795356i 0.292716π0.292716\pi
−0.606143 + 0.795356i 0.707284π0.707284\pi
410410 0 0
411411 6.71430i 0.331192i
412412 0 0
413413 8.23610i 0.405272i
414414 0 0
415415 28.7477 23.4724i 1.41117 1.15222i
416416 0 0
417417 7.21362i 0.353253i
418418 0 0
419419 −21.4955 −1.05012 −0.525061 0.851065i 0.675957π-0.675957\pi
−0.525061 + 0.851065i 0.675957π0.675957\pi
420420 0 0
421421 34.4082i 1.67696i 0.544936 + 0.838478i 0.316554π0.316554\pi
−0.544936 + 0.838478i 0.683446π0.683446\pi
422422 0 0
423423 24.9717 1.21417
424424 0 0
425425 30.3303 + 6.19115i 1.47124 + 0.300315i
426426 0 0
427427 −5.10080 −0.246845
428428 0 0
429429 6.74773 6.24718i 0.325783 0.301617i
430430 0 0
431431 10.7850i 0.519494i −0.965677 0.259747i 0.916361π-0.916361\pi
0.965677 0.259747i 0.0836392π-0.0836392\pi
432432 0 0
433433 9.79796i 0.470860i −0.971891 0.235430i 0.924350π-0.924350\pi
0.971891 0.235430i 0.0756498π-0.0756498\pi
434434 0 0
435435 −1.44600 1.77098i −0.0693304 0.0849121i
436436 0 0
437437 6.20520 0.296835
438438 0 0
439439 17.4955 0.835012 0.417506 0.908674i 0.362904π-0.362904\pi
0.417506 + 0.908674i 0.362904π0.362904\pi
440440 0 0
441441 −15.9220 −0.758189
442442 0 0
443443 6.56754i 0.312033i −0.987754 0.156017i 0.950135π-0.950135\pi
0.987754 0.156017i 0.0498653π-0.0498653\pi
444444 0 0
445445 −16.0000 19.5959i −0.758473 0.928936i
446446 0 0
447447 −1.82740 −0.0864331
448448 0 0
449449 3.88587i 0.183386i −0.995787 0.0916928i 0.970772π-0.970772\pi
0.995787 0.0916928i 0.0292278π-0.0292278\pi
450450 0 0
451451 −20.0000 −0.941763
452452 0 0
453453 −2.16900 −0.101909
454454 0 0
455455 1.02195 7.29526i 0.0479098 0.342007i
456456 0 0
457457 −12.2197 −0.571614 −0.285807 0.958287i 0.592262π-0.592262\pi
−0.285807 + 0.958287i 0.592262π0.592262\pi
458458 0 0
459459 −22.3303 −1.04229
460460 0 0
461461 13.5518i 0.631171i 0.948897 + 0.315585i 0.102201π0.102201\pi
−0.948897 + 0.315585i 0.897799π0.897799\pi
462462 0 0
463463 −33.7273 −1.56744 −0.783721 0.621113i 0.786681π-0.786681\pi
−0.783721 + 0.621113i 0.786681π0.786681\pi
464464 0 0
465465 −10.7477 + 8.77548i −0.498414 + 0.406953i
466466 0 0
467467 5.27537i 0.244115i 0.992523 + 0.122058i 0.0389492π0.0389492\pi
−0.992523 + 0.122058i 0.961051π0.961051\pi
468468 0 0
469469 7.16515 0.330856
470470 0 0
471471 14.5045 0.668334
472472 0 0
473473 26.9898 1.24099
474474 0 0
475475 5.48220 + 1.11905i 0.251541 + 0.0513455i
476476 0 0
477477 3.33712i 0.152796i
478478 0 0
479479 6.77590i 0.309599i −0.987946 0.154799i 0.950527π-0.950527\pi
0.987946 0.154799i 0.0494732π-0.0494732\pi
480480 0 0
481481 −20.7477 + 19.2087i −0.946015 + 0.875840i
482482 0 0
483483 3.27340 0.148945
484484 0 0
485485 −2.83485 + 2.31464i −0.128724 + 0.105103i
486486 0 0
487487 14.7701 0.669297 0.334649 0.942343i 0.391382π-0.391382\pi
0.334649 + 0.942343i 0.391382π0.391382\pi
488488 0 0
489489 3.88587i 0.175725i
490490 0 0
491491 −6.33030 −0.285683 −0.142841 0.989746i 0.545624π-0.545624\pi
−0.142841 + 0.989746i 0.545624π0.545624\pi
492492 0 0
493493 9.79796i 0.441278i
494494 0 0
495495 −14.4174 17.6577i −0.648015 0.793653i
496496 0 0
497497 6.19115i 0.277711i
498498 0 0
499499 20.3277i 0.909993i −0.890493 0.454997i 0.849640π-0.849640\pi
0.890493 0.454997i 0.150360π-0.150360\pi
500500 0 0
501501 10.7234i 0.479085i
502502 0 0
503503 42.6919i 1.90354i −0.306813 0.951770i 0.599263π-0.599263\pi
0.306813 0.951770i 0.400737π-0.400737\pi
504504 0 0
505505 −15.8745 + 12.9615i −0.706406 + 0.576778i
506506 0 0
507507 8.37420 + 0.646084i 0.371911 + 0.0286936i
508508 0 0
509509 24.8655i 1.10214i −0.834457 0.551072i 0.814219π-0.814219\pi
0.834457 0.551072i 0.185781π-0.185781\pi
510510 0 0
511511 7.16515 0.316968
512512 0 0
513513 −4.03620 −0.178203
514514 0 0
515515 −2.74110 3.35715i −0.120787 0.147934i
516516 0 0
517517 38.1694i 1.67869i
518518 0 0
519519 −7.16515 −0.314515
520520 0 0
521521 22.4174 0.982125 0.491063 0.871124i 0.336609π-0.336609\pi
0.491063 + 0.871124i 0.336609π0.336609\pi
522522 0 0
523523 35.2086i 1.53957i 0.638306 + 0.769783i 0.279636π0.279636\pi
−0.638306 + 0.769783i 0.720364π0.720364\pi
524524 0 0
525525 2.89200 + 0.590327i 0.126217 + 0.0257640i
526526 0 0
527527 59.4618 2.59020
528528 0 0
529529 −7.74773 −0.336858
530530 0 0
531531 23.2793i 1.01024i
532532 0 0
533533 −12.4104 13.4048i −0.537554 0.580625i
534534 0 0
535535 −11.4967 14.0805i −0.497046 0.608754i
536536 0 0
537537 0 0
538538 0 0
539539 24.3368i 1.04826i
540540 0 0
541541 45.1316i 1.94036i −0.242385 0.970180i 0.577930π-0.577930\pi
0.242385 0.970180i 0.422070π-0.422070\pi
542542 0 0
543543 9.31486i 0.399739i
544544 0 0
545545 12.0000 + 14.6969i 0.514024 + 0.629548i
546546 0 0
547547 26.4331i 1.13020i −0.825022 0.565100i 0.808838π-0.808838\pi
0.825022 0.565100i 0.191162π-0.191162\pi
548548 0 0
549549 −14.4174 −0.615321
550550 0 0
551551 1.77098i 0.0754463i
552552 0 0
553553 −6.54680 −0.278398
554554 0 0
555555 −7.16515 8.77548i −0.304144 0.372498i
556556 0 0
557557 −23.5257 −0.996816 −0.498408 0.866942i 0.666082π-0.666082\pi
−0.498408 + 0.866942i 0.666082π0.666082\pi
558558 0 0
559559 16.7477 + 18.0896i 0.708353 + 0.765109i
560560 0 0
561561 15.7899i 0.666650i
562562 0 0
563563 46.5684i 1.96263i −0.192418 0.981313i 0.561633π-0.561633\pi
0.192418 0.981313i 0.438367π-0.438367\pi
564564 0 0
565565 5.10080 + 6.24718i 0.214592 + 0.262821i
566566 0 0
567567 4.94990 0.207876
568568 0 0
569569 −10.4174 −0.436721 −0.218361 0.975868i 0.570071π-0.570071\pi
−0.218361 + 0.975868i 0.570071π0.570071\pi
570570 0 0
571571 −37.4955 −1.56914 −0.784568 0.620043i 0.787115π-0.787115\pi
−0.784568 + 0.620043i 0.787115π0.787115\pi
572572 0 0
573573 7.75301i 0.323886i
574574 0 0
575575 −27.1652 5.54506i −1.13287 0.231245i
576576 0 0
577577 46.5191 1.93662 0.968308 0.249758i 0.0803512π-0.0803512\pi
0.968308 + 0.249758i 0.0803512π0.0803512\pi
578578 0 0
579579 13.5518i 0.563194i
580580 0 0
581581 −15.1652 −0.629156
582582 0 0
583583 −5.10080 −0.211254
584584 0 0
585585 2.88854 20.6201i 0.119427 0.852534i
586586 0 0
587587 11.1153 0.458778 0.229389 0.973335i 0.426327π-0.426327\pi
0.229389 + 0.973335i 0.426327π0.426327\pi
588588 0 0
589589 10.7477 0.442852
590590 0 0
591591 5.78006i 0.237760i
592592 0 0
593593 −15.8745 −0.651888 −0.325944 0.945389i 0.605682π-0.605682\pi
−0.325944 + 0.945389i 0.605682π0.605682\pi
594594 0 0
595595 −8.00000 9.79796i −0.327968 0.401677i
596596 0 0
597597 2.58434i 0.105770i
598598 0 0
599599 −42.3303 −1.72957 −0.864785 0.502143i 0.832545π-0.832545\pi
−0.864785 + 0.502143i 0.832545π0.832545\pi
600600 0 0
601601 44.3303 1.80827 0.904135 0.427246i 0.140516π-0.140516\pi
0.904135 + 0.427246i 0.140516π0.140516\pi
602602 0 0
603603 20.2523 0.824738
604604 0 0
605605 7.93725 6.48074i 0.322695 0.263480i
606606 0 0
607607 34.1862i 1.38757i 0.720181 + 0.693787i 0.244059π0.244059\pi
−0.720181 + 0.693787i 0.755941π0.755941\pi
608608 0 0
609609 0.934237i 0.0378572i
610610 0 0
611611 −25.5826 + 23.6849i −1.03496 + 0.958187i
612612 0 0
613613 −24.6301 −0.994801 −0.497400 0.867521i 0.665712π-0.665712\pi
−0.497400 + 0.867521i 0.665712π0.665712\pi
614614 0 0
615615 5.66970 4.62929i 0.228624 0.186671i
616616 0 0
617617 28.2849 1.13871 0.569354 0.822093i 0.307193π-0.307193\pi
0.569354 + 0.822093i 0.307193π0.307193\pi
618618 0 0
619619 32.8221i 1.31923i −0.751603 0.659615i 0.770719π-0.770719\pi
0.751603 0.659615i 0.229281π-0.229281\pi
620620 0 0
621621 20.0000 0.802572
622622 0 0
623623 10.3373i 0.414157i
624624 0 0
625625 −23.0000 9.79796i −0.920000 0.391918i
626626 0 0
627627 2.85403i 0.113979i
628628 0 0
629629 48.5504i 1.93583i
630630 0 0
631631 24.3368i 0.968832i 0.874838 + 0.484416i 0.160968π0.160968\pi
−0.874838 + 0.484416i 0.839032π0.839032\pi
632632 0 0
633633 12.9217i 0.513591i
634634 0 0
635635 −16.5975 20.3277i −0.658652 0.806681i
636636 0 0
637637 16.3115 15.1015i 0.646283 0.598342i
638638 0 0
639639 17.4993i 0.692261i
640640 0 0
641641 −24.3303 −0.960989 −0.480495 0.876998i 0.659543π-0.659543\pi
−0.480495 + 0.876998i 0.659543π0.659543\pi
642642 0 0
643643 9.28790 0.366279 0.183140 0.983087i 0.441374π-0.441374\pi
0.183140 + 0.983087i 0.441374π0.441374\pi
644644 0 0
645645 −7.65120 + 6.24718i −0.301266 + 0.245983i
646646 0 0
647647 28.7478i 1.13019i 0.825025 + 0.565096i 0.191161π0.191161\pi
−0.825025 + 0.565096i 0.808839π0.808839\pi
648648 0 0
649649 35.5826 1.39674
650650 0 0
651651 5.66970 0.222213
652652 0 0
653653 15.2363i 0.596243i −0.954528 0.298122i 0.903640π-0.903640\pi
0.954528 0.298122i 0.0963601π-0.0963601\pi
654654 0 0
655655 −26.2668 + 21.4468i −1.02633 + 0.837994i
656656 0 0
657657 20.2523 0.790118
658658 0 0
659659 21.4955 0.837344 0.418672 0.908138i 0.362496π-0.362496\pi
0.418672 + 0.908138i 0.362496π0.362496\pi
660660 0 0
661661 8.48528i 0.330039i 0.986290 + 0.165020i 0.0527687π0.0527687\pi
−0.986290 + 0.165020i 0.947231π0.947231\pi
662662 0 0
663663 10.5830 9.79796i 0.411010 0.380521i
664664 0 0
665665 −1.44600 1.77098i −0.0560735 0.0686757i
666666 0 0
667667 8.77548i 0.339788i
668668 0 0
669669 5.06653i 0.195883i
670670 0 0
671671 22.0371i 0.850732i
672672 0 0
673673 1.02248i 0.0394136i −0.999806 0.0197068i 0.993727π-0.993727\pi
0.999806 0.0197068i 0.00627327π-0.00627327\pi
674674 0 0
675675 17.6697 + 3.60681i 0.680107 + 0.138826i
676676 0 0
677677 28.6411i 1.10077i 0.834912 + 0.550383i 0.185518π0.185518\pi
−0.834912 + 0.550383i 0.814482π0.814482\pi
678678 0 0
679679 1.49545 0.0573903
680680 0 0
681681 7.18142i 0.275193i
682682 0 0
683683 11.1153 0.425315 0.212658 0.977127i 0.431788π-0.431788\pi
0.212658 + 0.977127i 0.431788π0.431788\pi
684684 0 0
685685 18.0000 14.6969i 0.687745 0.561541i
686686 0 0
687687 −1.44600 −0.0551683
688688 0 0
689689 −3.16515 3.41875i −0.120583 0.130244i
690690 0 0
691691 26.5749i 1.01096i 0.862839 + 0.505478i 0.168684π0.168684\pi
−0.862839 + 0.505478i 0.831316π0.831316\pi
692692 0 0
693693 9.31486i 0.353842i
694694 0 0
695695 −19.3386 + 15.7899i −0.733555 + 0.598945i
696696 0 0
697697 −31.3676 −1.18813
698698 0 0
699699 1.66970 0.0631537
700700 0 0
701701 −33.1652 −1.25263 −0.626315 0.779570i 0.715438π-0.715438\pi
−0.626315 + 0.779570i 0.715438π0.715438\pi
702702 0 0
703703 8.77548i 0.330974i
704704 0 0
705705 −8.83485 10.8204i −0.332740 0.407521i
706706 0 0
707707 8.37420 0.314944
708708 0 0
709709 23.6849i 0.889504i −0.895654 0.444752i 0.853292π-0.853292\pi
0.895654 0.444752i 0.146708π-0.146708\pi
710710 0 0
711711 −18.5045 −0.693975
712712 0 0
713713 −53.2566 −1.99448
714714 0 0
715715 31.5178 + 4.41515i 1.17870 + 0.165117i
716716 0 0
717717 6.96800 0.260225
718718 0 0
719719 21.4955 0.801645 0.400823 0.916156i 0.368724π-0.368724\pi
0.400823 + 0.916156i 0.368724π0.368724\pi
720720 0 0
721721 1.77098i 0.0659548i
722722 0 0
723723 17.8926 0.665433
724724 0 0
725725 1.58258 7.75301i 0.0587754 0.287939i
726726 0 0
727727 26.4331i 0.980351i 0.871624 + 0.490176i 0.163067π0.163067\pi
−0.871624 + 0.490176i 0.836933π0.836933\pi
728728 0 0
729729 7.00000 0.259259
730730 0 0
731731 42.3303 1.56564
732732 0 0
733733 22.4213 0.828150 0.414075 0.910243i 0.364105π-0.364105\pi
0.414075 + 0.910243i 0.364105π0.364105\pi
734734 0 0
735735 5.63310 + 6.89911i 0.207780 + 0.254478i
736736 0 0
737737 30.9557i 1.14027i
738738 0 0
739739 37.7654i 1.38922i −0.719385 0.694611i 0.755576π-0.755576\pi
0.719385 0.694611i 0.244424π-0.244424\pi
740740 0 0
741741 1.91288 1.77098i 0.0702713 0.0650586i
742742 0 0
743743 −29.0079 −1.06420 −0.532099 0.846682i 0.678596π-0.678596\pi
−0.532099 + 0.846682i 0.678596π0.678596\pi
744744 0 0
745745 −4.00000 4.89898i −0.146549 0.179485i
746746 0 0
747747 −42.8643 −1.56832
748748 0 0
749749 7.42784i 0.271407i
750750 0 0
751751 23.1652 0.845308 0.422654 0.906291i 0.361098π-0.361098\pi
0.422654 + 0.906291i 0.361098π0.361098\pi
752752 0 0
753753 2.04495i 0.0745222i
754754 0 0
755755 −4.74773 5.81475i −0.172787 0.211621i
756756 0 0
757757 41.0234i 1.49102i 0.666494 + 0.745510i 0.267794π0.267794\pi
−0.666494 + 0.745510i 0.732206π0.732206\pi
758758 0 0
759759 14.1421i 0.513327i
760760 0 0
761761 11.3137i 0.410122i 0.978749 + 0.205061i 0.0657392π0.0657392\pi
−0.978749 + 0.205061i 0.934261π0.934261\pi
762762 0 0
763763 7.75301i 0.280678i
764764 0 0
765765 −22.6120 27.6939i −0.817539 1.00128i
766766 0 0
767767 22.0797 + 23.8488i 0.797252 + 0.861131i
768768 0 0
769769 8.95240i 0.322832i 0.986886 + 0.161416i 0.0516061π0.0516061\pi
−0.986886 + 0.161416i 0.948394π0.948394\pi
770770 0 0
771771 14.3303 0.516093
772772 0 0
773773 −9.66930 −0.347781 −0.173890 0.984765i 0.555634π-0.555634\pi
−0.173890 + 0.984765i 0.555634π0.555634\pi
774774 0 0
775775 −47.0514 9.60433i −1.69014 0.344998i
776776 0 0
777777 4.62929i 0.166075i
778778 0 0
779779 −5.66970 −0.203138
780780 0 0
781781 26.7477 0.957109
782782 0 0
783783 5.70805i 0.203989i
784784 0 0
785785 31.7490 + 38.8844i 1.13317 + 1.38785i
786786 0 0
787787 −18.4249 −0.656777 −0.328389 0.944543i 0.606506π-0.606506\pi
−0.328389 + 0.944543i 0.606506π0.606506\pi
788788 0 0
789789 13.0780 0.465590
790790 0 0
791791 3.29555i 0.117176i
792792 0 0
793793 14.7701 13.6745i 0.524502 0.485594i
794794 0 0
795795 1.44600 1.18065i 0.0512843 0.0418735i
796796 0 0
797797 25.0343i 0.886760i −0.896334 0.443380i 0.853779π-0.853779\pi
0.896334 0.443380i 0.146221π-0.146221\pi
798798 0 0
799799 59.8641i 2.11784i
800800 0 0
801801 29.2185i 1.03239i
802802 0 0
803803 30.9557i 1.09240i
804804 0 0
805805 7.16515 + 8.77548i 0.252538 + 0.309295i
806806 0 0
807807 5.92146i 0.208445i
808808 0 0
809809 4.74773 0.166921 0.0834606 0.996511i 0.473403π-0.473403\pi
0.0834606 + 0.996511i 0.473403π0.473403\pi
810810 0 0
811811 33.2892i 1.16894i −0.811415 0.584471i 0.801302π-0.801302\pi
0.811415 0.584471i 0.198698π-0.198698\pi
812812 0 0
813813 −10.2414 −0.359182
814814 0 0
815815 10.4174 8.50579i 0.364906 0.297945i
816816 0 0
817817 7.65120 0.267682
818818 0 0
819819 −6.24318 + 5.78006i −0.218154 + 0.201972i
820820 0 0
821821 19.7990i 0.690990i 0.938421 + 0.345495i 0.112289π0.112289\pi
−0.938421 + 0.345495i 0.887711π0.887711\pi
822822 0 0
823823 50.9280i 1.77524i 0.460576 + 0.887620i 0.347643π0.347643\pi
−0.460576 + 0.887620i 0.652357π0.652357\pi
824824 0 0
825825 −2.55040 + 12.4944i −0.0887936 + 0.434998i
826826 0 0
827827 15.1515 0.526870 0.263435 0.964677i 0.415145π-0.415145\pi
0.263435 + 0.964677i 0.415145π0.415145\pi
828828 0 0
829829 −42.2432 −1.46717 −0.733583 0.679600i 0.762154π-0.762154\pi
−0.733583 + 0.679600i 0.762154π0.762154\pi
830830 0 0
831831 3.82576 0.132714
832832 0 0
833833 38.1694i 1.32249i
834834 0 0
835835 −28.7477 + 23.4724i −0.994856 + 0.812297i
836836 0 0
837837 34.6410 1.19737
838838 0 0
839839 44.6029i 1.53986i 0.638126 + 0.769932i 0.279710π0.279710\pi
−0.638126 + 0.769932i 0.720290π0.720290\pi
840840 0 0
841841 −26.4955 −0.913636
842842 0 0
843843 −17.1298 −0.589982
844844 0 0
845845 16.5983 + 23.8642i 0.570997 + 0.820952i
846846 0 0
847847 −4.18710 −0.143871
848848 0 0
849849 4.41742 0.151606
850850 0 0
851851 43.4839i 1.49061i
852852 0 0
853853 −33.7273 −1.15480 −0.577401 0.816461i 0.695933π-0.695933\pi
−0.577401 + 0.816461i 0.695933π0.695933\pi
854854 0 0
855855 −4.08712 5.00568i −0.139777 0.171191i
856856 0 0
857857 14.4272i 0.492825i −0.969165 0.246413i 0.920748π-0.920748\pi
0.969165 0.246413i 0.0792519π-0.0792519\pi
858858 0 0
859859 −4.00000 −0.136478 −0.0682391 0.997669i 0.521738π-0.521738\pi
−0.0682391 + 0.997669i 0.521738π0.521738\pi
860860 0 0
861861 −2.99091 −0.101930
862862 0 0
863863 −9.66930 −0.329147 −0.164573 0.986365i 0.552625π-0.552625\pi
−0.164573 + 0.986365i 0.552625π0.552625\pi
864864 0 0
865865 −15.6838 19.2087i −0.533265 0.653114i
866866 0 0
867867 13.7812i 0.468033i
868868 0 0
869869 28.2843i 0.959478i
870870 0 0
871871 −20.7477 + 19.2087i −0.703010 + 0.650861i
872872 0 0
873873 4.22690 0.143059
874874 0 0
875875 4.74773 + 9.04517i 0.160502 + 0.305783i
876876 0 0
877877 41.7599 1.41013 0.705066 0.709142i 0.250917π-0.250917\pi
0.705066 + 0.709142i 0.250917π0.250917\pi
878878 0 0
879879 6.24718i 0.210712i
880880 0 0
881881 13.5826 0.457609 0.228804 0.973472i 0.426518π-0.426518\pi
0.228804 + 0.973472i 0.426518π0.426518\pi
882882 0 0
883883 24.3882i 0.820728i −0.911922 0.410364i 0.865402π-0.865402\pi
0.911922 0.410364i 0.134598π-0.134598\pi
884884 0 0
885885 −10.0871 + 8.23610i −0.339075 + 0.276853i
886886 0 0
887887 8.39909i 0.282014i −0.990009 0.141007i 0.954966π-0.954966\pi
0.990009 0.141007i 0.0450340π-0.0450340\pi
888888 0 0
889889 10.7234i 0.359651i
890890 0 0
891891 21.3852i 0.716430i
892892 0 0
893893 10.8204i 0.362092i
894894 0 0
895895 0 0
896896 0 0
897897 −9.47860 + 8.77548i −0.316481 + 0.293005i
898898 0 0
899899 15.1996i 0.506934i
900900 0 0
901901 −8.00000 −0.266519
902902 0 0
903903 4.03620 0.134316
904904 0 0
905905 24.9717 20.3893i 0.830088 0.677764i
906906 0 0
907907 50.9280i 1.69104i −0.533945 0.845519i 0.679291π-0.679291\pi
0.533945 0.845519i 0.320709π-0.320709\pi
908908 0 0
909909 23.6697 0.785074
910910 0 0
911911 54.3303 1.80004 0.900022 0.435845i 0.143551π-0.143551\pi
0.900022 + 0.435845i 0.143551π0.143551\pi
912912 0 0
913913 65.5183i 2.16834i
914914 0 0
915915 5.10080 + 6.24718i 0.168627 + 0.206525i
916916 0 0
917917 13.8564 0.457579
918918 0 0
919919 50.3303 1.66024 0.830122 0.557582i 0.188271π-0.188271\pi
0.830122 + 0.557582i 0.188271π0.188271\pi
920920 0 0
921921 11.9040i 0.392251i
922922 0 0
923923 16.5975 + 17.9274i 0.546314 + 0.590086i
924924 0 0
925925 7.84190 38.4173i 0.257840 1.26315i
926926 0 0
927927 5.00568i 0.164408i
928928 0 0
929929 46.7794i 1.53478i −0.641179 0.767391i 0.721555π-0.721555\pi
0.641179 0.767391i 0.278445π-0.278445\pi
930930 0 0
931931 6.89911i 0.226109i
932932 0 0
933933 19.5959i 0.641542i
934934 0 0
935935 42.3303 34.5625i 1.38435 1.13032i
936936 0 0
937937 37.1469i 1.21354i 0.794879 + 0.606768i 0.207534π0.207534\pi
−0.794879 + 0.606768i 0.792466π0.792466\pi
938938 0 0
939939 −12.0000 −0.391605
940940 0 0
941941 18.0280i 0.587696i 0.955852 + 0.293848i 0.0949360π0.0949360\pi
−0.955852 + 0.293848i 0.905064π0.905064\pi
942942 0 0
943943 28.0942 0.914873
944944 0 0
945945 −4.66061 5.70805i −0.151610 0.185683i
946946 0 0
947947 −51.2385 −1.66503 −0.832514 0.554004i 0.813099π-0.813099\pi
−0.832514 + 0.554004i 0.813099π0.813099\pi
948948 0 0
949949 −20.7477 + 19.2087i −0.673500 + 0.623540i
950950 0 0
951951 2.70522i 0.0877227i
952952 0 0
953953 22.7196i 0.735961i 0.929833 + 0.367981i 0.119951π0.119951\pi
−0.929833 + 0.367981i 0.880049π0.880049\pi
954954 0 0
955955 20.7846 16.9706i 0.672574 0.549155i
956956 0 0
957957 −4.03620 −0.130472
958958 0 0
959959 −9.49545 −0.306624
960960 0 0
961961 −61.2432 −1.97559
962962 0 0
963963 20.9948i 0.676548i
964964 0 0
965965 −36.3303 + 29.6636i −1.16951 + 0.954904i
966966 0 0
967967 −7.46050 −0.239914 −0.119957 0.992779i 0.538276π-0.538276\pi
−0.119957 + 0.992779i 0.538276π0.538276\pi
968968 0 0
969969 4.47620i 0.143796i
970970 0 0
971971 −24.6606 −0.791396 −0.395698 0.918381i 0.629497π-0.629497\pi
−0.395698 + 0.918381i 0.629497π0.629497\pi
972972 0 0
973973 10.2016 0.327048
974974 0 0
975975 −9.95678 + 6.04363i −0.318872 + 0.193551i
976976 0 0
977977 −20.6337 −0.660131 −0.330065 0.943958i 0.607071π-0.607071\pi
−0.330065 + 0.943958i 0.607071π0.607071\pi
978978 0 0
979979 −44.6606 −1.42736
980980 0 0
981981 21.9139i 0.699656i
982982 0 0
983983 −20.6337 −0.658113 −0.329057 0.944310i 0.606731π-0.606731\pi
−0.329057 + 0.944310i 0.606731π0.606731\pi
984984 0 0
985985 15.4955 12.6520i 0.493726 0.403126i
986986 0 0
987987 5.70805i 0.181689i
988988 0 0
989989 −37.9129 −1.20556
990990 0 0
991991 29.4955 0.936954 0.468477 0.883476i 0.344803π-0.344803\pi
0.468477 + 0.883476i 0.344803π0.344803\pi
992992 0 0
993993 −3.31320 −0.105141
994994 0 0
995995 6.92820 5.65685i 0.219639 0.179334i
996996 0 0
997997 52.8663i 1.67429i −0.546979 0.837146i 0.684222π-0.684222\pi
0.546979 0.837146i 0.315778π-0.315778\pi
998998 0 0
999999 28.2843i 0.894875i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 260.2.d.a.129.5 yes 8
3.2 odd 2 2340.2.j.d.649.6 8
4.3 odd 2 1040.2.f.e.129.3 8
5.2 odd 4 1300.2.f.f.701.6 8
5.3 odd 4 1300.2.f.f.701.3 8
5.4 even 2 inner 260.2.d.a.129.4 yes 8
13.5 odd 4 3380.2.c.d.2029.6 8
13.8 odd 4 3380.2.c.d.2029.5 8
13.12 even 2 inner 260.2.d.a.129.6 yes 8
15.14 odd 2 2340.2.j.d.649.1 8
20.19 odd 2 1040.2.f.e.129.6 8
39.38 odd 2 2340.2.j.d.649.3 8
52.51 odd 2 1040.2.f.e.129.4 8
65.12 odd 4 1300.2.f.f.701.5 8
65.34 odd 4 3380.2.c.d.2029.3 8
65.38 odd 4 1300.2.f.f.701.4 8
65.44 odd 4 3380.2.c.d.2029.4 8
65.64 even 2 inner 260.2.d.a.129.3 8
195.194 odd 2 2340.2.j.d.649.8 8
260.259 odd 2 1040.2.f.e.129.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.d.a.129.3 8 65.64 even 2 inner
260.2.d.a.129.4 yes 8 5.4 even 2 inner
260.2.d.a.129.5 yes 8 1.1 even 1 trivial
260.2.d.a.129.6 yes 8 13.12 even 2 inner
1040.2.f.e.129.3 8 4.3 odd 2
1040.2.f.e.129.4 8 52.51 odd 2
1040.2.f.e.129.5 8 260.259 odd 2
1040.2.f.e.129.6 8 20.19 odd 2
1300.2.f.f.701.3 8 5.3 odd 4
1300.2.f.f.701.4 8 65.38 odd 4
1300.2.f.f.701.5 8 65.12 odd 4
1300.2.f.f.701.6 8 5.2 odd 4
2340.2.j.d.649.1 8 15.14 odd 2
2340.2.j.d.649.3 8 39.38 odd 2
2340.2.j.d.649.6 8 3.2 odd 2
2340.2.j.d.649.8 8 195.194 odd 2
3380.2.c.d.2029.3 8 65.34 odd 4
3380.2.c.d.2029.4 8 65.44 odd 4
3380.2.c.d.2029.5 8 13.8 odd 4
3380.2.c.d.2029.6 8 13.5 odd 4