L(s) = 1 | + 2·2-s + 3·3-s − 2·4-s + 3·5-s + 6·6-s − 2·7-s − 11·8-s − 5·9-s + 6·10-s + 18·11-s − 6·12-s + 8·13-s − 4·14-s + 9·15-s − 11·16-s + 14·17-s − 10·18-s − 6·19-s − 6·20-s − 6·21-s + 36·22-s + 22·23-s − 33·24-s − 9·25-s + 16·26-s − 21·27-s + 4·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.73·3-s − 4-s + 1.34·5-s + 2.44·6-s − 0.755·7-s − 3.88·8-s − 5/3·9-s + 1.89·10-s + 5.42·11-s − 1.73·12-s + 2.21·13-s − 1.06·14-s + 2.32·15-s − 2.75·16-s + 3.39·17-s − 2.35·18-s − 1.37·19-s − 1.34·20-s − 1.30·21-s + 7.67·22-s + 4.58·23-s − 6.73·24-s − 9/5·25-s + 3.13·26-s − 4.04·27-s + 0.755·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
42.80155881 |
L(21) |
≈ |
42.80155881 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1−pT+3pT2−5T3+11T4−T5+15T6+9T7+27T8+9pT9+15p2T10−p3T11+11p4T12−5p5T13+3p7T14−p8T15+p8T16 |
| 3 | 1−pT+14T2−4p2T3+37pT4−26p2T5+560T6−335pT7+1987T8−335p2T9+560p2T10−26p5T11+37p5T12−4p7T13+14p6T14−p8T15+p8T16 |
| 5 | 1−3T+18T2−36T3+31pT4−261T5+993T6−1428T7+5151T8−1428pT9+993p2T10−261p3T11+31p5T12−36p5T13+18p6T14−3p7T15+p8T16 |
| 7 | 1+2T+31T2+60T3+506T4+881T5+5550T6+8441T7+44837T8+8441pT9+5550p2T10+881p3T11+506p4T12+60p5T13+31p6T14+2p7T15+p8T16 |
| 11 | 1−18T+219T2−1875T3+12998T4−73485T5+354666T6−132522pT7+5210553T8−132522p2T9+354666p2T10−73485p3T11+12998p4T12−1875p5T13+219p6T14−18p7T15+p8T16 |
| 13 | 1−8T+100T2−567T3+4139T4−18554T5+100344T6−368819T7+1591961T8−368819pT9+100344p2T10−18554p3T11+4139p4T12−567p5T13+100p6T14−8p7T15+p8T16 |
| 17 | 1−14T+171T2−1412T3+10571T4−64147T5+358770T6−1712910T7+7592697T8−1712910pT9+358770p2T10−64147p3T11+10571p4T12−1412p5T13+171p6T14−14p7T15+p8T16 |
| 19 | 1+6T+126T2+550T3+6723T4+22465T5+213499T6+577881T7+4727383T8+577881pT9+213499p2T10+22465p3T11+6723p4T12+550p5T13+126p6T14+6p7T15+p8T16 |
| 23 | 1−22T+372T2−4321T3+42281T4−334832T5+2312310T6−13546893T7+70125249T8−13546893pT9+2312310p2T10−334832p3T11+42281p4T12−4321p5T13+372p6T14−22p7T15+p8T16 |
| 29 | 1−12T+228T2−2067T3+22391T4−160170T5+1262877T6−7289670T7+45291747T8−7289670pT9+1262877p2T10−160170p3T11+22391p4T12−2067p5T13+228p6T14−12p7T15+p8T16 |
| 37 | 1+8T+184T2+1003T3+14093T4+50978T5+642206T6+1564129T7+23810023T8+1564129pT9+642206p2T10+50978p3T11+14093p4T12+1003p5T13+184p6T14+8p7T15+p8T16 |
| 41 | 1+22T+498T2+6811T3+89027T4+877490T5+8169387T6+61298622T7+433574745T8+61298622pT9+8169387p2T10+877490p3T11+89027p4T12+6811p5T13+498p6T14+22p7T15+p8T16 |
| 43 | 1+2T+205T2+403T3+21134T4+40961T5+1453424T6+2649346T7+72598441T8+2649346pT9+1453424p2T10+40961p3T11+21134p4T12+403p5T13+205p6T14+2p7T15+p8T16 |
| 47 | 1+18T+411T2+4965T3+66911T4+618324T5+6152625T6+45556584T7+358374597T8+45556584pT9+6152625p2T10+618324p3T11+66911p4T12+4965p5T13+411p6T14+18p7T15+p8T16 |
| 53 | 1−6T+244T2−1605T3+30376T4−203598T5+2505355T6−16037007T7+152391427T8−16037007pT9+2505355p2T10−203598p3T11+30376p4T12−1605p5T13+244p6T14−6p7T15+p8T16 |
| 59 | 1+4T+309T2+1189T3+45401T4+174557T5+4316301T6+15922002T7+295944207T8+15922002pT9+4316301p2T10+174557p3T11+45401p4T12+1189p5T13+309p6T14+4p7T15+p8T16 |
| 61 | 1−30T+776T2−13665T3+208005T4−2593710T5+28390399T6−268109040T7+2240276459T8−268109040pT9+28390399p2T10−2593710p3T11+208005p4T12−13665p5T13+776p6T14−30p7T15+p8T16 |
| 67 | 1+13T+427T2+4781T3+85148T4+816694T5+10335824T6+84073193T7+837177553T8+84073193pT9+10335824p2T10+816694p3T11+85148p4T12+4781p5T13+427p6T14+13p7T15+p8T16 |
| 71 | 1+T+465T2+325T3+99635T4+48353T5+12913848T6+4606650T7+1111294875T8+4606650pT9+12913848p2T10+48353p3T11+99635p4T12+325p5T13+465p6T14+p7T15+p8T16 |
| 73 | 1−2T+280T2−423T3+39254T4−42716T5+3669099T6−2910611T7+282548711T8−2910611pT9+3669099p2T10−42716p3T11+39254p4T12−423p5T13+280p6T14−2p7T15+p8T16 |
| 79 | 1−8T+343T2−2748T3+65666T4−478310T5+8349177T6−54496370T7+769049897T8−54496370pT9+8349177p2T10−478310p3T11+65666p4T12−2748p5T13+343p6T14−8p7T15+p8T16 |
| 83 | 1−39T+12pT2−18231T3+273488T4−3449334T5+38635404T6−390596853T7+3688239693T8−390596853pT9+38635404p2T10−3449334p3T11+273488p4T12−18231p5T13+12p7T14−39p7T15+p8T16 |
| 89 | 1−27T+807T2−15033T3+266447T4−3727035T5+48700278T6−532857324T7+5459588145T8−532857324pT9+48700278p2T10−3727035p3T11+266447p4T12−15033p5T13+807p6T14−27p7T15+p8T16 |
| 97 | 1−34T+1021T2−20487T3+372881T4−5460517T5+73647420T6−843517135T7+8954673947T8−843517135pT9+73647420p2T10−5460517p3T11+372881p4T12−20487p5T13+1021p6T14−34p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.48922036255695188032153995746, −3.90440327798996540820770290020, −3.85644654283247669571367407202, −3.67785749657087078758425042079, −3.61225763734995469468947103785, −3.55246081584157521437001666567, −3.52161221072777681190294212969, −3.51512656782749023188541822393, −3.21565094478984252232131943120, −3.18216519625795522332704430782, −3.12208589020671323357587230479, −3.10796975895595825101672747725, −2.99888128042516508548917096363, −2.73718964775739896649560550894, −2.28106842267315120489838433733, −2.07670455890525745557489366450, −1.91189006466009234453826698555, −1.90785407613630421997222776427, −1.89096130756384857595321329742, −1.53075198023429447349881932914, −1.24713037714290168964586397242, −1.06112232391071405361692778038, −0.74250389482280370000216607371, −0.64716136886203316775996400597, −0.59097615621094013380322393746,
0.59097615621094013380322393746, 0.64716136886203316775996400597, 0.74250389482280370000216607371, 1.06112232391071405361692778038, 1.24713037714290168964586397242, 1.53075198023429447349881932914, 1.89096130756384857595321329742, 1.90785407613630421997222776427, 1.91189006466009234453826698555, 2.07670455890525745557489366450, 2.28106842267315120489838433733, 2.73718964775739896649560550894, 2.99888128042516508548917096363, 3.10796975895595825101672747725, 3.12208589020671323357587230479, 3.18216519625795522332704430782, 3.21565094478984252232131943120, 3.51512656782749023188541822393, 3.52161221072777681190294212969, 3.55246081584157521437001666567, 3.61225763734995469468947103785, 3.67785749657087078758425042079, 3.85644654283247669571367407202, 3.90440327798996540820770290020, 4.48922036255695188032153995746
Plot not available for L-functions of degree greater than 10.