Properties

Label 961.2.a.j.1.1
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.28064\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69016 q^{2} -1.41916 q^{3} +5.23694 q^{4} +0.608384 q^{5} +3.81777 q^{6} -1.72688 q^{7} -8.70786 q^{8} -0.985973 q^{9} -1.63665 q^{10} +1.33739 q^{11} -7.43207 q^{12} -3.67067 q^{13} +4.64557 q^{14} -0.863396 q^{15} +12.9516 q^{16} +2.76282 q^{17} +2.65242 q^{18} -2.56768 q^{19} +3.18607 q^{20} +2.45072 q^{21} -3.59779 q^{22} +0.539261 q^{23} +12.3579 q^{24} -4.62987 q^{25} +9.87466 q^{26} +5.65675 q^{27} -9.04356 q^{28} +8.13087 q^{29} +2.32267 q^{30} -17.4262 q^{32} -1.89798 q^{33} -7.43241 q^{34} -1.05061 q^{35} -5.16348 q^{36} -7.74498 q^{37} +6.90745 q^{38} +5.20928 q^{39} -5.29772 q^{40} -0.104052 q^{41} -6.59283 q^{42} +3.00470 q^{43} +7.00384 q^{44} -0.599850 q^{45} -1.45070 q^{46} -6.72498 q^{47} -18.3805 q^{48} -4.01789 q^{49} +12.4551 q^{50} -3.92089 q^{51} -19.2230 q^{52} -2.79875 q^{53} -15.2175 q^{54} +0.813648 q^{55} +15.0374 q^{56} +3.64396 q^{57} -21.8733 q^{58} +0.466233 q^{59} -4.52155 q^{60} +5.11468 q^{61} +1.70266 q^{63} +20.9759 q^{64} -2.23317 q^{65} +5.10586 q^{66} +8.29847 q^{67} +14.4687 q^{68} -0.765299 q^{69} +2.82629 q^{70} +4.75871 q^{71} +8.58572 q^{72} -7.50619 q^{73} +20.8352 q^{74} +6.57054 q^{75} -13.4468 q^{76} -2.30951 q^{77} -14.0138 q^{78} +9.69896 q^{79} +7.87956 q^{80} -5.06994 q^{81} +0.279916 q^{82} +16.6846 q^{83} +12.8343 q^{84} +1.68085 q^{85} -8.08312 q^{86} -11.5390 q^{87} -11.6458 q^{88} +15.3163 q^{89} +1.61369 q^{90} +6.33879 q^{91} +2.82407 q^{92} +18.0912 q^{94} -1.56213 q^{95} +24.7306 q^{96} -1.27918 q^{97} +10.8087 q^{98} -1.31863 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 3 q^{3} + 8 q^{4} + 3 q^{5} + 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} + 18 q^{11} + 8 q^{13} - 9 q^{14} + 18 q^{15} + 4 q^{16} + 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} - q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69016 −1.90223 −0.951114 0.308841i \(-0.900059\pi\)
−0.951114 + 0.308841i \(0.900059\pi\)
\(3\) −1.41916 −0.819355 −0.409677 0.912230i \(-0.634359\pi\)
−0.409677 + 0.912230i \(0.634359\pi\)
\(4\) 5.23694 2.61847
\(5\) 0.608384 0.272077 0.136039 0.990704i \(-0.456563\pi\)
0.136039 + 0.990704i \(0.456563\pi\)
\(6\) 3.81777 1.55860
\(7\) −1.72688 −0.652699 −0.326349 0.945249i \(-0.605819\pi\)
−0.326349 + 0.945249i \(0.605819\pi\)
\(8\) −8.70786 −3.07869
\(9\) −0.985973 −0.328658
\(10\) −1.63665 −0.517553
\(11\) 1.33739 0.403239 0.201619 0.979464i \(-0.435380\pi\)
0.201619 + 0.979464i \(0.435380\pi\)
\(12\) −7.43207 −2.14545
\(13\) −3.67067 −1.01806 −0.509030 0.860749i \(-0.669996\pi\)
−0.509030 + 0.860749i \(0.669996\pi\)
\(14\) 4.64557 1.24158
\(15\) −0.863396 −0.222928
\(16\) 12.9516 3.23791
\(17\) 2.76282 0.670082 0.335041 0.942204i \(-0.391250\pi\)
0.335041 + 0.942204i \(0.391250\pi\)
\(18\) 2.65242 0.625181
\(19\) −2.56768 −0.589066 −0.294533 0.955641i \(-0.595164\pi\)
−0.294533 + 0.955641i \(0.595164\pi\)
\(20\) 3.18607 0.712426
\(21\) 2.45072 0.534792
\(22\) −3.59779 −0.767052
\(23\) 0.539261 0.112444 0.0562218 0.998418i \(-0.482095\pi\)
0.0562218 + 0.998418i \(0.482095\pi\)
\(24\) 12.3579 2.52254
\(25\) −4.62987 −0.925974
\(26\) 9.87466 1.93658
\(27\) 5.65675 1.08864
\(28\) −9.04356 −1.70907
\(29\) 8.13087 1.50986 0.754932 0.655803i \(-0.227670\pi\)
0.754932 + 0.655803i \(0.227670\pi\)
\(30\) 2.32267 0.424060
\(31\) 0 0
\(32\) −17.4262 −3.08054
\(33\) −1.89798 −0.330396
\(34\) −7.43241 −1.27465
\(35\) −1.05061 −0.177585
\(36\) −5.16348 −0.860580
\(37\) −7.74498 −1.27327 −0.636633 0.771167i \(-0.719673\pi\)
−0.636633 + 0.771167i \(0.719673\pi\)
\(38\) 6.90745 1.12054
\(39\) 5.20928 0.834152
\(40\) −5.29772 −0.837643
\(41\) −0.104052 −0.0162502 −0.00812508 0.999967i \(-0.502586\pi\)
−0.00812508 + 0.999967i \(0.502586\pi\)
\(42\) −6.59283 −1.01730
\(43\) 3.00470 0.458213 0.229106 0.973401i \(-0.426420\pi\)
0.229106 + 0.973401i \(0.426420\pi\)
\(44\) 7.00384 1.05587
\(45\) −0.599850 −0.0894203
\(46\) −1.45070 −0.213893
\(47\) −6.72498 −0.980939 −0.490470 0.871458i \(-0.663175\pi\)
−0.490470 + 0.871458i \(0.663175\pi\)
\(48\) −18.3805 −2.65300
\(49\) −4.01789 −0.573984
\(50\) 12.4551 1.76141
\(51\) −3.92089 −0.549035
\(52\) −19.2230 −2.66576
\(53\) −2.79875 −0.384437 −0.192219 0.981352i \(-0.561568\pi\)
−0.192219 + 0.981352i \(0.561568\pi\)
\(54\) −15.2175 −2.07084
\(55\) 0.813648 0.109712
\(56\) 15.0374 2.00946
\(57\) 3.64396 0.482654
\(58\) −21.8733 −2.87210
\(59\) 0.466233 0.0606983 0.0303492 0.999539i \(-0.490338\pi\)
0.0303492 + 0.999539i \(0.490338\pi\)
\(60\) −4.52155 −0.583730
\(61\) 5.11468 0.654867 0.327434 0.944874i \(-0.393816\pi\)
0.327434 + 0.944874i \(0.393816\pi\)
\(62\) 0 0
\(63\) 1.70266 0.214514
\(64\) 20.9759 2.62198
\(65\) −2.23317 −0.276991
\(66\) 5.10586 0.628488
\(67\) 8.29847 1.01382 0.506910 0.861999i \(-0.330788\pi\)
0.506910 + 0.861999i \(0.330788\pi\)
\(68\) 14.4687 1.75459
\(69\) −0.765299 −0.0921312
\(70\) 2.82629 0.337806
\(71\) 4.75871 0.564755 0.282377 0.959303i \(-0.408877\pi\)
0.282377 + 0.959303i \(0.408877\pi\)
\(72\) 8.58572 1.01184
\(73\) −7.50619 −0.878533 −0.439267 0.898357i \(-0.644762\pi\)
−0.439267 + 0.898357i \(0.644762\pi\)
\(74\) 20.8352 2.42204
\(75\) 6.57054 0.758701
\(76\) −13.4468 −1.54245
\(77\) −2.30951 −0.263194
\(78\) −14.0138 −1.58675
\(79\) 9.69896 1.09122 0.545609 0.838040i \(-0.316298\pi\)
0.545609 + 0.838040i \(0.316298\pi\)
\(80\) 7.87956 0.880962
\(81\) −5.06994 −0.563327
\(82\) 0.279916 0.0309115
\(83\) 16.6846 1.83137 0.915686 0.401895i \(-0.131648\pi\)
0.915686 + 0.401895i \(0.131648\pi\)
\(84\) 12.8343 1.40034
\(85\) 1.68085 0.182314
\(86\) −8.08312 −0.871625
\(87\) −11.5390 −1.23711
\(88\) −11.6458 −1.24145
\(89\) 15.3163 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(90\) 1.61369 0.170098
\(91\) 6.33879 0.664486
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) −1.56213 −0.160271
\(96\) 24.7306 2.52406
\(97\) −1.27918 −0.129881 −0.0649404 0.997889i \(-0.520686\pi\)
−0.0649404 + 0.997889i \(0.520686\pi\)
\(98\) 10.8087 1.09185
\(99\) −1.31863 −0.132528
\(100\) −24.2463 −2.42463
\(101\) 8.12024 0.807994 0.403997 0.914760i \(-0.367621\pi\)
0.403997 + 0.914760i \(0.367621\pi\)
\(102\) 10.5478 1.04439
\(103\) 15.1525 1.49302 0.746511 0.665374i \(-0.231728\pi\)
0.746511 + 0.665374i \(0.231728\pi\)
\(104\) 31.9636 3.13429
\(105\) 1.49098 0.145505
\(106\) 7.52906 0.731287
\(107\) −12.3756 −1.19640 −0.598198 0.801348i \(-0.704116\pi\)
−0.598198 + 0.801348i \(0.704116\pi\)
\(108\) 29.6240 2.85057
\(109\) 7.20958 0.690553 0.345276 0.938501i \(-0.387785\pi\)
0.345276 + 0.938501i \(0.387785\pi\)
\(110\) −2.18884 −0.208698
\(111\) 10.9914 1.04326
\(112\) −22.3659 −2.11338
\(113\) 16.6718 1.56835 0.784176 0.620539i \(-0.213086\pi\)
0.784176 + 0.620539i \(0.213086\pi\)
\(114\) −9.80281 −0.918117
\(115\) 0.328077 0.0305934
\(116\) 42.5808 3.95353
\(117\) 3.61918 0.334593
\(118\) −1.25424 −0.115462
\(119\) −4.77105 −0.437362
\(120\) 7.51834 0.686327
\(121\) −9.21138 −0.837398
\(122\) −13.7593 −1.24571
\(123\) 0.147667 0.0133147
\(124\) 0 0
\(125\) −5.85866 −0.524014
\(126\) −4.58041 −0.408055
\(127\) 12.9094 1.14553 0.572764 0.819721i \(-0.305871\pi\)
0.572764 + 0.819721i \(0.305871\pi\)
\(128\) −21.5760 −1.90707
\(129\) −4.26417 −0.375439
\(130\) 6.00758 0.526900
\(131\) −2.43778 −0.212990 −0.106495 0.994313i \(-0.533963\pi\)
−0.106495 + 0.994313i \(0.533963\pi\)
\(132\) −9.93960 −0.865131
\(133\) 4.43407 0.384482
\(134\) −22.3242 −1.92851
\(135\) 3.44147 0.296195
\(136\) −24.0583 −2.06298
\(137\) −8.14382 −0.695774 −0.347887 0.937536i \(-0.613101\pi\)
−0.347887 + 0.937536i \(0.613101\pi\)
\(138\) 2.05877 0.175255
\(139\) 1.35336 0.114791 0.0573954 0.998352i \(-0.481720\pi\)
0.0573954 + 0.998352i \(0.481720\pi\)
\(140\) −5.50195 −0.465000
\(141\) 9.54385 0.803737
\(142\) −12.8017 −1.07429
\(143\) −4.90912 −0.410521
\(144\) −12.7700 −1.06416
\(145\) 4.94669 0.410800
\(146\) 20.1928 1.67117
\(147\) 5.70204 0.470297
\(148\) −40.5600 −3.33401
\(149\) −9.00385 −0.737624 −0.368812 0.929504i \(-0.620235\pi\)
−0.368812 + 0.929504i \(0.620235\pi\)
\(150\) −17.6758 −1.44322
\(151\) 3.20841 0.261097 0.130548 0.991442i \(-0.458326\pi\)
0.130548 + 0.991442i \(0.458326\pi\)
\(152\) 22.3590 1.81355
\(153\) −2.72407 −0.220228
\(154\) 6.21295 0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −3.32677 −0.265505 −0.132753 0.991149i \(-0.542382\pi\)
−0.132753 + 0.991149i \(0.542382\pi\)
\(158\) −26.0917 −2.07574
\(159\) 3.97188 0.314991
\(160\) −10.6018 −0.838146
\(161\) −0.931238 −0.0733918
\(162\) 13.6389 1.07158
\(163\) 1.74035 0.136314 0.0681572 0.997675i \(-0.478288\pi\)
0.0681572 + 0.997675i \(0.478288\pi\)
\(164\) −0.544913 −0.0425506
\(165\) −1.15470 −0.0898933
\(166\) −44.8841 −3.48368
\(167\) 14.0165 1.08463 0.542314 0.840176i \(-0.317548\pi\)
0.542314 + 0.840176i \(0.317548\pi\)
\(168\) −21.3406 −1.64646
\(169\) 0.473782 0.0364447
\(170\) −4.52176 −0.346803
\(171\) 2.53166 0.193601
\(172\) 15.7354 1.19982
\(173\) −0.0119809 −0.000910890 0 −0.000455445 1.00000i \(-0.500145\pi\)
−0.000455445 1.00000i \(0.500145\pi\)
\(174\) 31.0418 2.35327
\(175\) 7.99522 0.604382
\(176\) 17.3214 1.30565
\(177\) −0.661661 −0.0497335
\(178\) −41.2032 −3.08831
\(179\) 9.97800 0.745791 0.372896 0.927873i \(-0.378365\pi\)
0.372896 + 0.927873i \(0.378365\pi\)
\(180\) −3.14138 −0.234144
\(181\) 18.6032 1.38276 0.691381 0.722490i \(-0.257003\pi\)
0.691381 + 0.722490i \(0.257003\pi\)
\(182\) −17.0523 −1.26400
\(183\) −7.25857 −0.536569
\(184\) −4.69581 −0.346180
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) −35.2183 −2.56856
\(189\) −9.76852 −0.710556
\(190\) 4.20238 0.304873
\(191\) 1.19812 0.0866928 0.0433464 0.999060i \(-0.486198\pi\)
0.0433464 + 0.999060i \(0.486198\pi\)
\(192\) −29.7682 −2.14834
\(193\) 12.7266 0.916078 0.458039 0.888932i \(-0.348552\pi\)
0.458039 + 0.888932i \(0.348552\pi\)
\(194\) 3.44118 0.247063
\(195\) 3.16924 0.226954
\(196\) −21.0414 −1.50296
\(197\) 2.96860 0.211504 0.105752 0.994393i \(-0.466275\pi\)
0.105752 + 0.994393i \(0.466275\pi\)
\(198\) 3.54733 0.252098
\(199\) 13.1841 0.934593 0.467296 0.884101i \(-0.345228\pi\)
0.467296 + 0.884101i \(0.345228\pi\)
\(200\) 40.3163 2.85079
\(201\) −11.7769 −0.830678
\(202\) −21.8447 −1.53699
\(203\) −14.0410 −0.985487
\(204\) −20.5335 −1.43763
\(205\) −0.0633035 −0.00442131
\(206\) −40.7626 −2.84007
\(207\) −0.531696 −0.0369555
\(208\) −47.5411 −3.29638
\(209\) −3.43399 −0.237534
\(210\) −4.01097 −0.276783
\(211\) 18.3323 1.26205 0.631023 0.775764i \(-0.282635\pi\)
0.631023 + 0.775764i \(0.282635\pi\)
\(212\) −14.6569 −1.00664
\(213\) −6.75339 −0.462735
\(214\) 33.2923 2.27582
\(215\) 1.82801 0.124669
\(216\) −49.2582 −3.35160
\(217\) 0 0
\(218\) −19.3949 −1.31359
\(219\) 10.6525 0.719830
\(220\) 4.26102 0.287278
\(221\) −10.1414 −0.682183
\(222\) −29.5686 −1.98451
\(223\) −9.39601 −0.629203 −0.314602 0.949224i \(-0.601871\pi\)
−0.314602 + 0.949224i \(0.601871\pi\)
\(224\) 30.0929 2.01067
\(225\) 4.56493 0.304328
\(226\) −44.8497 −2.98336
\(227\) 8.45942 0.561472 0.280736 0.959785i \(-0.409422\pi\)
0.280736 + 0.959785i \(0.409422\pi\)
\(228\) 19.0832 1.26381
\(229\) −22.8434 −1.50954 −0.754768 0.655991i \(-0.772251\pi\)
−0.754768 + 0.655991i \(0.772251\pi\)
\(230\) −0.882579 −0.0581956
\(231\) 3.27758 0.215649
\(232\) −70.8025 −4.64841
\(233\) 16.2535 1.06480 0.532400 0.846493i \(-0.321290\pi\)
0.532400 + 0.846493i \(0.321290\pi\)
\(234\) −9.73615 −0.636472
\(235\) −4.09137 −0.266891
\(236\) 2.44163 0.158937
\(237\) −13.7644 −0.894095
\(238\) 12.8349 0.831962
\(239\) −18.2730 −1.18198 −0.590991 0.806678i \(-0.701263\pi\)
−0.590991 + 0.806678i \(0.701263\pi\)
\(240\) −11.1824 −0.721820
\(241\) 18.1715 1.17053 0.585266 0.810841i \(-0.300990\pi\)
0.585266 + 0.810841i \(0.300990\pi\)
\(242\) 24.7800 1.59292
\(243\) −9.77517 −0.627078
\(244\) 26.7852 1.71475
\(245\) −2.44442 −0.156168
\(246\) −0.397246 −0.0253275
\(247\) 9.42508 0.599704
\(248\) 0 0
\(249\) −23.6782 −1.50054
\(250\) 15.7607 0.996794
\(251\) 22.9302 1.44734 0.723671 0.690145i \(-0.242453\pi\)
0.723671 + 0.690145i \(0.242453\pi\)
\(252\) 8.91670 0.561699
\(253\) 0.721203 0.0453417
\(254\) −34.7284 −2.17905
\(255\) −2.38541 −0.149380
\(256\) 16.0910 1.00569
\(257\) 0.106193 0.00662414 0.00331207 0.999995i \(-0.498946\pi\)
0.00331207 + 0.999995i \(0.498946\pi\)
\(258\) 11.4713 0.714170
\(259\) 13.3746 0.831060
\(260\) −11.6950 −0.725292
\(261\) −8.01681 −0.496228
\(262\) 6.55802 0.405156
\(263\) 7.29731 0.449971 0.224986 0.974362i \(-0.427766\pi\)
0.224986 + 0.974362i \(0.427766\pi\)
\(264\) 16.5273 1.01719
\(265\) −1.70271 −0.104597
\(266\) −11.9283 −0.731373
\(267\) −21.7363 −1.33024
\(268\) 43.4586 2.65465
\(269\) −16.2194 −0.988912 −0.494456 0.869203i \(-0.664633\pi\)
−0.494456 + 0.869203i \(0.664633\pi\)
\(270\) −9.25810 −0.563430
\(271\) 5.14564 0.312575 0.156288 0.987712i \(-0.450047\pi\)
0.156288 + 0.987712i \(0.450047\pi\)
\(272\) 35.7830 2.16966
\(273\) −8.99579 −0.544450
\(274\) 21.9082 1.32352
\(275\) −6.19195 −0.373389
\(276\) −4.00782 −0.241243
\(277\) 16.9228 1.01679 0.508397 0.861123i \(-0.330238\pi\)
0.508397 + 0.861123i \(0.330238\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) 1.90667 0.113742 0.0568711 0.998382i \(-0.481888\pi\)
0.0568711 + 0.998382i \(0.481888\pi\)
\(282\) −25.6744 −1.52889
\(283\) −15.3098 −0.910074 −0.455037 0.890473i \(-0.650374\pi\)
−0.455037 + 0.890473i \(0.650374\pi\)
\(284\) 24.9211 1.47879
\(285\) 2.21692 0.131319
\(286\) 13.2063 0.780905
\(287\) 0.179685 0.0106065
\(288\) 17.1817 1.01244
\(289\) −9.36683 −0.550990
\(290\) −13.3074 −0.781435
\(291\) 1.81536 0.106418
\(292\) −39.3094 −2.30041
\(293\) 26.7937 1.56530 0.782651 0.622460i \(-0.213867\pi\)
0.782651 + 0.622460i \(0.213867\pi\)
\(294\) −15.3394 −0.894611
\(295\) 0.283648 0.0165146
\(296\) 67.4422 3.92000
\(297\) 7.56529 0.438983
\(298\) 24.2218 1.40313
\(299\) −1.97945 −0.114474
\(300\) 34.4095 1.98663
\(301\) −5.18876 −0.299075
\(302\) −8.63112 −0.496665
\(303\) −11.5240 −0.662034
\(304\) −33.2556 −1.90734
\(305\) 3.11169 0.178175
\(306\) 7.32816 0.418923
\(307\) 8.95126 0.510875 0.255438 0.966826i \(-0.417780\pi\)
0.255438 + 0.966826i \(0.417780\pi\)
\(308\) −12.0948 −0.689164
\(309\) −21.5039 −1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −45.3617 −2.56810
\(313\) −0.451321 −0.0255102 −0.0127551 0.999919i \(-0.504060\pi\)
−0.0127551 + 0.999919i \(0.504060\pi\)
\(314\) 8.94953 0.505051
\(315\) 1.03587 0.0583646
\(316\) 50.7928 2.85732
\(317\) −5.58084 −0.313451 −0.156726 0.987642i \(-0.550094\pi\)
−0.156726 + 0.987642i \(0.550094\pi\)
\(318\) −10.6850 −0.599184
\(319\) 10.8742 0.608836
\(320\) 12.7614 0.713383
\(321\) 17.5630 0.980273
\(322\) 2.50517 0.139608
\(323\) −7.09403 −0.394722
\(324\) −26.5509 −1.47505
\(325\) 16.9947 0.942696
\(326\) −4.68180 −0.259301
\(327\) −10.2316 −0.565808
\(328\) 0.906069 0.0500293
\(329\) 11.6132 0.640258
\(330\) 3.10632 0.170997
\(331\) −24.2055 −1.33045 −0.665226 0.746642i \(-0.731665\pi\)
−0.665226 + 0.746642i \(0.731665\pi\)
\(332\) 87.3761 4.79539
\(333\) 7.63634 0.418469
\(334\) −37.7065 −2.06321
\(335\) 5.04865 0.275837
\(336\) 31.7409 1.73161
\(337\) −11.0360 −0.601168 −0.300584 0.953755i \(-0.597182\pi\)
−0.300584 + 0.953755i \(0.597182\pi\)
\(338\) −1.27455 −0.0693262
\(339\) −23.6600 −1.28504
\(340\) 8.80253 0.477384
\(341\) 0 0
\(342\) −6.81056 −0.368273
\(343\) 19.0266 1.02734
\(344\) −26.1645 −1.41070
\(345\) −0.465596 −0.0250668
\(346\) 0.0322304 0.00173272
\(347\) 18.5674 0.996749 0.498375 0.866962i \(-0.333930\pi\)
0.498375 + 0.866962i \(0.333930\pi\)
\(348\) −60.4292 −3.23935
\(349\) −32.1746 −1.72227 −0.861134 0.508378i \(-0.830245\pi\)
−0.861134 + 0.508378i \(0.830245\pi\)
\(350\) −21.5084 −1.14967
\(351\) −20.7640 −1.10830
\(352\) −23.3056 −1.24219
\(353\) −32.2134 −1.71455 −0.857273 0.514863i \(-0.827843\pi\)
−0.857273 + 0.514863i \(0.827843\pi\)
\(354\) 1.77997 0.0946043
\(355\) 2.89512 0.153657
\(356\) 80.2104 4.25114
\(357\) 6.77091 0.358355
\(358\) −26.8424 −1.41866
\(359\) 21.1623 1.11690 0.558451 0.829538i \(-0.311396\pi\)
0.558451 + 0.829538i \(0.311396\pi\)
\(360\) 5.22341 0.275298
\(361\) −12.4070 −0.653002
\(362\) −50.0454 −2.63033
\(363\) 13.0725 0.686126
\(364\) 33.1959 1.73994
\(365\) −4.56664 −0.239029
\(366\) 19.5267 1.02068
\(367\) −12.9964 −0.678408 −0.339204 0.940713i \(-0.610158\pi\)
−0.339204 + 0.940713i \(0.610158\pi\)
\(368\) 6.98431 0.364082
\(369\) 0.102592 0.00534074
\(370\) 12.6758 0.658983
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −9.94005 −0.513988
\(375\) 8.31439 0.429354
\(376\) 58.5602 3.02001
\(377\) −29.8457 −1.53713
\(378\) 26.2788 1.35164
\(379\) −14.9557 −0.768225 −0.384112 0.923286i \(-0.625492\pi\)
−0.384112 + 0.923286i \(0.625492\pi\)
\(380\) −8.18079 −0.419666
\(381\) −18.3206 −0.938593
\(382\) −3.22312 −0.164909
\(383\) 11.6503 0.595305 0.297652 0.954674i \(-0.403796\pi\)
0.297652 + 0.954674i \(0.403796\pi\)
\(384\) 30.6199 1.56256
\(385\) −1.40507 −0.0716091
\(386\) −34.2364 −1.74259
\(387\) −2.96256 −0.150595
\(388\) −6.69897 −0.340089
\(389\) −14.4019 −0.730207 −0.365103 0.930967i \(-0.618966\pi\)
−0.365103 + 0.930967i \(0.618966\pi\)
\(390\) −8.52575 −0.431718
\(391\) 1.48988 0.0753465
\(392\) 34.9872 1.76712
\(393\) 3.45962 0.174515
\(394\) −7.98598 −0.402328
\(395\) 5.90069 0.296896
\(396\) −6.90560 −0.347019
\(397\) 15.7901 0.792484 0.396242 0.918146i \(-0.370314\pi\)
0.396242 + 0.918146i \(0.370314\pi\)
\(398\) −35.4672 −1.77781
\(399\) −6.29267 −0.315028
\(400\) −59.9644 −2.99822
\(401\) −31.0232 −1.54923 −0.774613 0.632436i \(-0.782055\pi\)
−0.774613 + 0.632436i \(0.782055\pi\)
\(402\) 31.6817 1.58014
\(403\) 0 0
\(404\) 42.5252 2.11571
\(405\) −3.08447 −0.153268
\(406\) 37.7725 1.87462
\(407\) −10.3581 −0.513431
\(408\) 34.1426 1.69031
\(409\) −6.58582 −0.325648 −0.162824 0.986655i \(-0.552060\pi\)
−0.162824 + 0.986655i \(0.552060\pi\)
\(410\) 0.170296 0.00841033
\(411\) 11.5574 0.570086
\(412\) 79.3527 3.90943
\(413\) −0.805127 −0.0396177
\(414\) 1.43035 0.0702977
\(415\) 10.1506 0.498275
\(416\) 63.9657 3.13618
\(417\) −1.92064 −0.0940544
\(418\) 9.23797 0.451844
\(419\) −14.6720 −0.716773 −0.358387 0.933573i \(-0.616673\pi\)
−0.358387 + 0.933573i \(0.616673\pi\)
\(420\) 7.80817 0.381000
\(421\) −26.7159 −1.30205 −0.651026 0.759056i \(-0.725661\pi\)
−0.651026 + 0.759056i \(0.725661\pi\)
\(422\) −49.3167 −2.40070
\(423\) 6.63065 0.322393
\(424\) 24.3711 1.18356
\(425\) −12.7915 −0.620479
\(426\) 18.1677 0.880226
\(427\) −8.83243 −0.427431
\(428\) −64.8103 −3.13272
\(429\) 6.96685 0.336363
\(430\) −4.91764 −0.237150
\(431\) 3.98801 0.192096 0.0960478 0.995377i \(-0.469380\pi\)
0.0960478 + 0.995377i \(0.469380\pi\)
\(432\) 73.2642 3.52492
\(433\) −18.0766 −0.868704 −0.434352 0.900743i \(-0.643023\pi\)
−0.434352 + 0.900743i \(0.643023\pi\)
\(434\) 0 0
\(435\) −7.02016 −0.336591
\(436\) 37.7561 1.80819
\(437\) −1.38465 −0.0662367
\(438\) −28.6569 −1.36928
\(439\) 22.9086 1.09337 0.546684 0.837339i \(-0.315890\pi\)
0.546684 + 0.837339i \(0.315890\pi\)
\(440\) −7.08513 −0.337771
\(441\) 3.96153 0.188644
\(442\) 27.2819 1.29767
\(443\) −21.4913 −1.02108 −0.510542 0.859853i \(-0.670555\pi\)
−0.510542 + 0.859853i \(0.670555\pi\)
\(444\) 57.5612 2.73174
\(445\) 9.31817 0.441724
\(446\) 25.2767 1.19689
\(447\) 12.7779 0.604376
\(448\) −36.2228 −1.71137
\(449\) −18.7996 −0.887209 −0.443604 0.896223i \(-0.646300\pi\)
−0.443604 + 0.896223i \(0.646300\pi\)
\(450\) −12.2804 −0.578902
\(451\) −0.139158 −0.00655270
\(452\) 87.3092 4.10668
\(453\) −4.55326 −0.213931
\(454\) −22.7572 −1.06805
\(455\) 3.85642 0.180792
\(456\) −31.7311 −1.48594
\(457\) −4.10599 −0.192070 −0.0960351 0.995378i \(-0.530616\pi\)
−0.0960351 + 0.995378i \(0.530616\pi\)
\(458\) 61.4524 2.87148
\(459\) 15.6286 0.729480
\(460\) 1.71812 0.0801078
\(461\) 22.8750 1.06540 0.532698 0.846305i \(-0.321178\pi\)
0.532698 + 0.846305i \(0.321178\pi\)
\(462\) −8.81720 −0.410213
\(463\) 16.5670 0.769932 0.384966 0.922931i \(-0.374213\pi\)
0.384966 + 0.922931i \(0.374213\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 38.1462 1.76520 0.882599 0.470127i \(-0.155792\pi\)
0.882599 + 0.470127i \(0.155792\pi\)
\(468\) 18.9534 0.876121
\(469\) −14.3305 −0.661719
\(470\) 11.0064 0.507688
\(471\) 4.72123 0.217543
\(472\) −4.05989 −0.186872
\(473\) 4.01847 0.184769
\(474\) 37.0284 1.70077
\(475\) 11.8880 0.545459
\(476\) −24.9857 −1.14522
\(477\) 2.75949 0.126348
\(478\) 49.1572 2.24840
\(479\) −33.6848 −1.53910 −0.769548 0.638589i \(-0.779518\pi\)
−0.769548 + 0.638589i \(0.779518\pi\)
\(480\) 15.0457 0.686739
\(481\) 28.4292 1.29626
\(482\) −48.8843 −2.22662
\(483\) 1.32158 0.0601340
\(484\) −48.2394 −2.19270
\(485\) −0.778230 −0.0353376
\(486\) 26.2967 1.19284
\(487\) 20.6767 0.936950 0.468475 0.883477i \(-0.344804\pi\)
0.468475 + 0.883477i \(0.344804\pi\)
\(488\) −44.5379 −2.01614
\(489\) −2.46984 −0.111690
\(490\) 6.57587 0.297067
\(491\) −24.7327 −1.11617 −0.558087 0.829783i \(-0.688464\pi\)
−0.558087 + 0.829783i \(0.688464\pi\)
\(492\) 0.773321 0.0348640
\(493\) 22.4641 1.01173
\(494\) −25.3549 −1.14077
\(495\) −0.802235 −0.0360578
\(496\) 0 0
\(497\) −8.21771 −0.368615
\(498\) 63.6980 2.85437
\(499\) 24.5602 1.09946 0.549732 0.835341i \(-0.314730\pi\)
0.549732 + 0.835341i \(0.314730\pi\)
\(500\) −30.6814 −1.37211
\(501\) −19.8917 −0.888695
\(502\) −61.6858 −2.75317
\(503\) 14.7391 0.657185 0.328593 0.944472i \(-0.393426\pi\)
0.328593 + 0.944472i \(0.393426\pi\)
\(504\) −14.8265 −0.660425
\(505\) 4.94022 0.219837
\(506\) −1.94015 −0.0862501
\(507\) −0.672374 −0.0298612
\(508\) 67.6059 2.99953
\(509\) −15.5063 −0.687304 −0.343652 0.939097i \(-0.611664\pi\)
−0.343652 + 0.939097i \(0.611664\pi\)
\(510\) 6.41712 0.284155
\(511\) 12.9623 0.573418
\(512\) −0.135395 −0.00598366
\(513\) −14.5247 −0.641282
\(514\) −0.285676 −0.0126006
\(515\) 9.21854 0.406217
\(516\) −22.3312 −0.983075
\(517\) −8.99394 −0.395553
\(518\) −35.9799 −1.58086
\(519\) 0.0170028 0.000746342 0
\(520\) 19.4462 0.852771
\(521\) 29.4146 1.28867 0.644337 0.764741i \(-0.277133\pi\)
0.644337 + 0.764741i \(0.277133\pi\)
\(522\) 21.5665 0.943939
\(523\) −45.0260 −1.96885 −0.984424 0.175810i \(-0.943746\pi\)
−0.984424 + 0.175810i \(0.943746\pi\)
\(524\) −12.7665 −0.557708
\(525\) −11.3465 −0.495203
\(526\) −19.6309 −0.855947
\(527\) 0 0
\(528\) −24.5819 −1.06979
\(529\) −22.7092 −0.987356
\(530\) 4.58056 0.198967
\(531\) −0.459693 −0.0199490
\(532\) 23.2209 1.00676
\(533\) 0.381940 0.0165436
\(534\) 58.4741 2.53042
\(535\) −7.52912 −0.325512
\(536\) −72.2619 −3.12124
\(537\) −14.1604 −0.611068
\(538\) 43.6326 1.88114
\(539\) −5.37349 −0.231453
\(540\) 18.0228 0.775577
\(541\) 37.7787 1.62423 0.812117 0.583495i \(-0.198315\pi\)
0.812117 + 0.583495i \(0.198315\pi\)
\(542\) −13.8426 −0.594589
\(543\) −26.4009 −1.13297
\(544\) −48.1454 −2.06422
\(545\) 4.38619 0.187884
\(546\) 24.2001 1.03567
\(547\) −18.2088 −0.778550 −0.389275 0.921122i \(-0.627274\pi\)
−0.389275 + 0.921122i \(0.627274\pi\)
\(548\) −42.6487 −1.82186
\(549\) −5.04293 −0.215227
\(550\) 16.6573 0.710270
\(551\) −20.8774 −0.889409
\(552\) 6.66412 0.283644
\(553\) −16.7489 −0.712237
\(554\) −45.5250 −1.93417
\(555\) 6.68699 0.283847
\(556\) 7.08748 0.300576
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) −13.6071 −0.575003
\(561\) −5.24377 −0.221392
\(562\) −5.12923 −0.216364
\(563\) −36.1618 −1.52404 −0.762019 0.647555i \(-0.775792\pi\)
−0.762019 + 0.647555i \(0.775792\pi\)
\(564\) 49.9805 2.10456
\(565\) 10.1429 0.426713
\(566\) 41.1858 1.73117
\(567\) 8.75517 0.367683
\(568\) −41.4382 −1.73871
\(569\) −41.4998 −1.73976 −0.869880 0.493263i \(-0.835804\pi\)
−0.869880 + 0.493263i \(0.835804\pi\)
\(570\) −5.96387 −0.249799
\(571\) 32.3931 1.35561 0.677805 0.735242i \(-0.262931\pi\)
0.677805 + 0.735242i \(0.262931\pi\)
\(572\) −25.7087 −1.07494
\(573\) −1.70033 −0.0710322
\(574\) −0.483381 −0.0201759
\(575\) −2.49671 −0.104120
\(576\) −20.6816 −0.861735
\(577\) 40.9825 1.70613 0.853063 0.521809i \(-0.174743\pi\)
0.853063 + 0.521809i \(0.174743\pi\)
\(578\) 25.1982 1.04811
\(579\) −18.0611 −0.750593
\(580\) 25.9055 1.07567
\(581\) −28.8123 −1.19533
\(582\) −4.88361 −0.202432
\(583\) −3.74302 −0.155020
\(584\) 65.3629 2.70474
\(585\) 2.20185 0.0910352
\(586\) −72.0791 −2.97756
\(587\) −25.5314 −1.05379 −0.526897 0.849929i \(-0.676644\pi\)
−0.526897 + 0.849929i \(0.676644\pi\)
\(588\) 29.8612 1.23146
\(589\) 0 0
\(590\) −0.763058 −0.0314146
\(591\) −4.21292 −0.173297
\(592\) −100.310 −4.12272
\(593\) 44.5318 1.82870 0.914350 0.404925i \(-0.132702\pi\)
0.914350 + 0.404925i \(0.132702\pi\)
\(594\) −20.3518 −0.835045
\(595\) −2.90263 −0.118996
\(596\) −47.1526 −1.93145
\(597\) −18.7103 −0.765763
\(598\) 5.32502 0.217756
\(599\) 18.9800 0.775500 0.387750 0.921765i \(-0.373252\pi\)
0.387750 + 0.921765i \(0.373252\pi\)
\(600\) −57.2154 −2.33581
\(601\) 12.8398 0.523747 0.261873 0.965102i \(-0.415660\pi\)
0.261873 + 0.965102i \(0.415660\pi\)
\(602\) 13.9586 0.568909
\(603\) −8.18206 −0.333199
\(604\) 16.8022 0.683673
\(605\) −5.60405 −0.227837
\(606\) 31.0012 1.25934
\(607\) −38.1393 −1.54803 −0.774013 0.633170i \(-0.781754\pi\)
−0.774013 + 0.633170i \(0.781754\pi\)
\(608\) 44.7448 1.81464
\(609\) 19.9265 0.807463
\(610\) −8.37092 −0.338929
\(611\) 24.6852 0.998654
\(612\) −14.2658 −0.576659
\(613\) 18.5424 0.748920 0.374460 0.927243i \(-0.377828\pi\)
0.374460 + 0.927243i \(0.377828\pi\)
\(614\) −24.0803 −0.971801
\(615\) 0.0898380 0.00362262
\(616\) 20.1109 0.810293
\(617\) 8.13555 0.327525 0.163762 0.986500i \(-0.447637\pi\)
0.163762 + 0.986500i \(0.447637\pi\)
\(618\) 57.8488 2.32702
\(619\) 5.36063 0.215462 0.107731 0.994180i \(-0.465641\pi\)
0.107731 + 0.994180i \(0.465641\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −55.5669 −2.22803
\(623\) −26.4494 −1.05967
\(624\) 67.4686 2.70091
\(625\) 19.5850 0.783401
\(626\) 1.21412 0.0485261
\(627\) 4.87340 0.194625
\(628\) −17.4221 −0.695217
\(629\) −21.3980 −0.853193
\(630\) −2.78665 −0.111023
\(631\) −29.0470 −1.15634 −0.578172 0.815915i \(-0.696234\pi\)
−0.578172 + 0.815915i \(0.696234\pi\)
\(632\) −84.4572 −3.35953
\(633\) −26.0165 −1.03406
\(634\) 15.0133 0.596256
\(635\) 7.85389 0.311672
\(636\) 20.8005 0.824793
\(637\) 14.7483 0.584350
\(638\) −29.2532 −1.15814
\(639\) −4.69196 −0.185611
\(640\) −13.1265 −0.518870
\(641\) 27.6055 1.09035 0.545177 0.838321i \(-0.316463\pi\)
0.545177 + 0.838321i \(0.316463\pi\)
\(642\) −47.2473 −1.86470
\(643\) 4.22904 0.166777 0.0833885 0.996517i \(-0.473426\pi\)
0.0833885 + 0.996517i \(0.473426\pi\)
\(644\) −4.87683 −0.192174
\(645\) −2.59425 −0.102148
\(646\) 19.0840 0.750852
\(647\) 26.2809 1.03321 0.516604 0.856225i \(-0.327196\pi\)
0.516604 + 0.856225i \(0.327196\pi\)
\(648\) 44.1483 1.73431
\(649\) 0.623536 0.0244759
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) −13.3517 −0.522494 −0.261247 0.965272i \(-0.584134\pi\)
−0.261247 + 0.965272i \(0.584134\pi\)
\(654\) 27.5245 1.07629
\(655\) −1.48311 −0.0579498
\(656\) −1.34764 −0.0526166
\(657\) 7.40090 0.288737
\(658\) −31.2414 −1.21792
\(659\) −15.4158 −0.600515 −0.300258 0.953858i \(-0.597073\pi\)
−0.300258 + 0.953858i \(0.597073\pi\)
\(660\) −6.04709 −0.235383
\(661\) −4.72306 −0.183706 −0.0918530 0.995773i \(-0.529279\pi\)
−0.0918530 + 0.995773i \(0.529279\pi\)
\(662\) 65.1164 2.53082
\(663\) 14.3923 0.558950
\(664\) −145.287 −5.63823
\(665\) 2.69762 0.104609
\(666\) −20.5429 −0.796023
\(667\) 4.38466 0.169775
\(668\) 73.4034 2.84006
\(669\) 13.3345 0.515541
\(670\) −13.5817 −0.524705
\(671\) 6.84033 0.264068
\(672\) −42.7068 −1.64745
\(673\) 31.0730 1.19778 0.598888 0.800833i \(-0.295609\pi\)
0.598888 + 0.800833i \(0.295609\pi\)
\(674\) 29.6885 1.14356
\(675\) −26.1900 −1.00805
\(676\) 2.48116 0.0954294
\(677\) 9.03995 0.347434 0.173717 0.984796i \(-0.444422\pi\)
0.173717 + 0.984796i \(0.444422\pi\)
\(678\) 63.6491 2.44443
\(679\) 2.20898 0.0847730
\(680\) −14.6367 −0.561290
\(681\) −12.0053 −0.460044
\(682\) 0 0
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 13.2581 0.506938
\(685\) −4.95457 −0.189304
\(686\) −51.1844 −1.95423
\(687\) 32.4186 1.23685
\(688\) 38.9158 1.48365
\(689\) 10.2733 0.391380
\(690\) 1.25252 0.0476828
\(691\) 36.4754 1.38759 0.693795 0.720172i \(-0.255937\pi\)
0.693795 + 0.720172i \(0.255937\pi\)
\(692\) −0.0627431 −0.00238514
\(693\) 2.27712 0.0865006
\(694\) −49.9491 −1.89604
\(695\) 0.823364 0.0312320
\(696\) 100.480 3.80870
\(697\) −0.287476 −0.0108889
\(698\) 86.5547 3.27615
\(699\) −23.0664 −0.872450
\(700\) 41.8705 1.58256
\(701\) −1.61444 −0.0609766 −0.0304883 0.999535i \(-0.509706\pi\)
−0.0304883 + 0.999535i \(0.509706\pi\)
\(702\) 55.8585 2.10824
\(703\) 19.8866 0.750037
\(704\) 28.0530 1.05729
\(705\) 5.80632 0.218679
\(706\) 86.6590 3.26145
\(707\) −14.0227 −0.527377
\(708\) −3.46507 −0.130225
\(709\) −11.4880 −0.431439 −0.215720 0.976455i \(-0.569210\pi\)
−0.215720 + 0.976455i \(0.569210\pi\)
\(710\) −7.78833 −0.292291
\(711\) −9.56291 −0.358637
\(712\) −133.372 −4.99833
\(713\) 0 0
\(714\) −18.2148 −0.681672
\(715\) −2.98663 −0.111694
\(716\) 52.2542 1.95283
\(717\) 25.9324 0.968462
\(718\) −56.9298 −2.12460
\(719\) 14.1710 0.528489 0.264244 0.964456i \(-0.414877\pi\)
0.264244 + 0.964456i \(0.414877\pi\)
\(720\) −7.76904 −0.289535
\(721\) −26.1666 −0.974493
\(722\) 33.3768 1.24216
\(723\) −25.7884 −0.959081
\(724\) 97.4236 3.62072
\(725\) −37.6449 −1.39809
\(726\) −35.1670 −1.30517
\(727\) −26.9477 −0.999436 −0.499718 0.866188i \(-0.666563\pi\)
−0.499718 + 0.866188i \(0.666563\pi\)
\(728\) −55.1974 −2.04575
\(729\) 29.0824 1.07713
\(730\) 12.2850 0.454688
\(731\) 8.30145 0.307040
\(732\) −38.0127 −1.40499
\(733\) −28.4235 −1.04985 −0.524924 0.851149i \(-0.675906\pi\)
−0.524924 + 0.851149i \(0.675906\pi\)
\(734\) 34.9624 1.29049
\(735\) 3.46903 0.127957
\(736\) −9.39725 −0.346387
\(737\) 11.0983 0.408811
\(738\) −0.275989 −0.0101593
\(739\) 0.697306 0.0256508 0.0128254 0.999918i \(-0.495917\pi\)
0.0128254 + 0.999918i \(0.495917\pi\)
\(740\) −24.6760 −0.907108
\(741\) −13.3757 −0.491370
\(742\) −13.0018 −0.477310
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) 11.9064 0.435925
\(747\) −16.4506 −0.601894
\(748\) 19.3503 0.707519
\(749\) 21.3712 0.780886
\(750\) −22.3670 −0.816728
\(751\) −37.0660 −1.35256 −0.676279 0.736646i \(-0.736408\pi\)
−0.676279 + 0.736646i \(0.736408\pi\)
\(752\) −87.0995 −3.17619
\(753\) −32.5417 −1.18589
\(754\) 80.2895 2.92397
\(755\) 1.95194 0.0710385
\(756\) −51.1571 −1.86057
\(757\) −6.40201 −0.232685 −0.116342 0.993209i \(-0.537117\pi\)
−0.116342 + 0.993209i \(0.537117\pi\)
\(758\) 40.2333 1.46134
\(759\) −1.02351 −0.0371509
\(760\) 13.6028 0.493427
\(761\) 21.3388 0.773532 0.386766 0.922178i \(-0.373592\pi\)
0.386766 + 0.922178i \(0.373592\pi\)
\(762\) 49.2853 1.78542
\(763\) −12.4501 −0.450723
\(764\) 6.27447 0.227002
\(765\) −1.65728 −0.0599190
\(766\) −31.3412 −1.13241
\(767\) −1.71138 −0.0617945
\(768\) −22.8358 −0.824017
\(769\) −12.2566 −0.441983 −0.220991 0.975276i \(-0.570929\pi\)
−0.220991 + 0.975276i \(0.570929\pi\)
\(770\) 3.77986 0.136217
\(771\) −0.150705 −0.00542752
\(772\) 66.6482 2.39872
\(773\) 34.7035 1.24820 0.624098 0.781346i \(-0.285466\pi\)
0.624098 + 0.781346i \(0.285466\pi\)
\(774\) 7.96974 0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −18.9808 −0.680933
\(778\) 38.7434 1.38902
\(779\) 0.267172 0.00957242
\(780\) 16.5971 0.594272
\(781\) 6.36426 0.227731
\(782\) −4.00801 −0.143326
\(783\) 45.9943 1.64370
\(784\) −52.0382 −1.85851
\(785\) −2.02395 −0.0722380
\(786\) −9.30691 −0.331966
\(787\) 20.1182 0.717136 0.358568 0.933504i \(-0.383265\pi\)
0.358568 + 0.933504i \(0.383265\pi\)
\(788\) 15.5463 0.553816
\(789\) −10.3561 −0.368686
\(790\) −15.8738 −0.564763
\(791\) −28.7902 −1.02366
\(792\) 11.4825 0.408012
\(793\) −18.7743 −0.666694
\(794\) −42.4779 −1.50748
\(795\) 2.41643 0.0857018
\(796\) 69.0441 2.44720
\(797\) −26.2019 −0.928121 −0.464060 0.885804i \(-0.653608\pi\)
−0.464060 + 0.885804i \(0.653608\pi\)
\(798\) 16.9283 0.599254
\(799\) −18.5799 −0.657310
\(800\) 80.6809 2.85250
\(801\) −15.1014 −0.533583
\(802\) 83.4573 2.94698
\(803\) −10.0387 −0.354259
\(804\) −61.6748 −2.17510
\(805\) −0.566550 −0.0199683
\(806\) 0 0
\(807\) 23.0179 0.810270
\(808\) −70.7099 −2.48757
\(809\) −36.4501 −1.28152 −0.640759 0.767742i \(-0.721380\pi\)
−0.640759 + 0.767742i \(0.721380\pi\)
\(810\) 8.29770 0.291551
\(811\) −19.1064 −0.670918 −0.335459 0.942055i \(-0.608891\pi\)
−0.335459 + 0.942055i \(0.608891\pi\)
\(812\) −73.5320 −2.58047
\(813\) −7.30251 −0.256110
\(814\) 27.8648 0.976662
\(815\) 1.05880 0.0370881
\(816\) −50.7820 −1.77773
\(817\) −7.71511 −0.269917
\(818\) 17.7169 0.619456
\(819\) −6.24988 −0.218388
\(820\) −0.331516 −0.0115770
\(821\) −39.4598 −1.37716 −0.688578 0.725162i \(-0.741765\pi\)
−0.688578 + 0.725162i \(0.741765\pi\)
\(822\) −31.0913 −1.08443
\(823\) 31.5880 1.10109 0.550544 0.834806i \(-0.314420\pi\)
0.550544 + 0.834806i \(0.314420\pi\)
\(824\) −131.946 −4.59656
\(825\) 8.78740 0.305938
\(826\) 2.16592 0.0753619
\(827\) −19.8298 −0.689551 −0.344776 0.938685i \(-0.612045\pi\)
−0.344776 + 0.938685i \(0.612045\pi\)
\(828\) −2.78446 −0.0967667
\(829\) −8.99987 −0.312578 −0.156289 0.987711i \(-0.549953\pi\)
−0.156289 + 0.987711i \(0.549953\pi\)
\(830\) −27.3068 −0.947832
\(831\) −24.0163 −0.833115
\(832\) −76.9954 −2.66933
\(833\) −11.1007 −0.384617
\(834\) 5.16683 0.178913
\(835\) 8.52740 0.295103
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) −31.8452 −1.09942 −0.549709 0.835356i \(-0.685261\pi\)
−0.549709 + 0.835356i \(0.685261\pi\)
\(840\) −12.9833 −0.447965
\(841\) 37.1110 1.27969
\(842\) 71.8698 2.47680
\(843\) −2.70587 −0.0931953
\(844\) 96.0050 3.30463
\(845\) 0.288241 0.00991579
\(846\) −17.8375 −0.613265
\(847\) 15.9069 0.546569
\(848\) −36.2483 −1.24477
\(849\) 21.7271 0.745673
\(850\) 34.4111 1.18029
\(851\) −4.17656 −0.143171
\(852\) −35.3671 −1.21166
\(853\) −49.0917 −1.68087 −0.840434 0.541914i \(-0.817700\pi\)
−0.840434 + 0.541914i \(0.817700\pi\)
\(854\) 23.7606 0.813071
\(855\) 1.54022 0.0526744
\(856\) 107.765 3.68334
\(857\) 19.2405 0.657242 0.328621 0.944462i \(-0.393416\pi\)
0.328621 + 0.944462i \(0.393416\pi\)
\(858\) −18.7419 −0.639838
\(859\) −4.64215 −0.158388 −0.0791940 0.996859i \(-0.525235\pi\)
−0.0791940 + 0.996859i \(0.525235\pi\)
\(860\) 9.57319 0.326443
\(861\) −0.255002 −0.00869046
\(862\) −10.7284 −0.365410
\(863\) 38.5304 1.31159 0.655795 0.754939i \(-0.272333\pi\)
0.655795 + 0.754939i \(0.272333\pi\)
\(864\) −98.5755 −3.35361
\(865\) −0.00728897 −0.000247833 0
\(866\) 48.6287 1.65247
\(867\) 13.2931 0.451456
\(868\) 0 0
\(869\) 12.9713 0.440022
\(870\) 18.8853 0.640273
\(871\) −30.4609 −1.03213
\(872\) −62.7800 −2.12600
\(873\) 1.26123 0.0426863
\(874\) 3.72492 0.125997
\(875\) 10.1172 0.342023
\(876\) 55.7866 1.88485
\(877\) −9.25834 −0.312632 −0.156316 0.987707i \(-0.549962\pi\)
−0.156316 + 0.987707i \(0.549962\pi\)
\(878\) −61.6277 −2.07983
\(879\) −38.0246 −1.28254
\(880\) 10.5381 0.355238
\(881\) 17.8791 0.602361 0.301181 0.953567i \(-0.402619\pi\)
0.301181 + 0.953567i \(0.402619\pi\)
\(882\) −10.6571 −0.358844
\(883\) 48.3156 1.62595 0.812975 0.582299i \(-0.197847\pi\)
0.812975 + 0.582299i \(0.197847\pi\)
\(884\) −53.1098 −1.78628
\(885\) −0.402544 −0.0135314
\(886\) 57.8150 1.94233
\(887\) 23.5122 0.789463 0.394732 0.918797i \(-0.370838\pi\)
0.394732 + 0.918797i \(0.370838\pi\)
\(888\) −95.7116 −3.21187
\(889\) −22.2930 −0.747684
\(890\) −25.0673 −0.840259
\(891\) −6.78050 −0.227155
\(892\) −49.2063 −1.64755
\(893\) 17.2676 0.577838
\(894\) −34.3746 −1.14966
\(895\) 6.07046 0.202913
\(896\) 37.2591 1.24474
\(897\) 2.80916 0.0937951
\(898\) 50.5739 1.68767
\(899\) 0 0
\(900\) 23.9062 0.796874
\(901\) −7.73243 −0.257605
\(902\) 0.374357 0.0124647
\(903\) 7.36370 0.245049
\(904\) −145.176 −4.82847
\(905\) 11.3179 0.376219
\(906\) 12.2490 0.406945
\(907\) −12.5821 −0.417783 −0.208892 0.977939i \(-0.566986\pi\)
−0.208892 + 0.977939i \(0.566986\pi\)
\(908\) 44.3015 1.47020
\(909\) −8.00634 −0.265553
\(910\) −10.3744 −0.343907
\(911\) 47.2845 1.56660 0.783302 0.621641i \(-0.213534\pi\)
0.783302 + 0.621641i \(0.213534\pi\)
\(912\) 47.1952 1.56279
\(913\) 22.3138 0.738480
\(914\) 11.0458 0.365361
\(915\) −4.41599 −0.145988
\(916\) −119.630 −3.95267
\(917\) 4.20976 0.139018
\(918\) −42.0433 −1.38764
\(919\) −23.1319 −0.763050 −0.381525 0.924359i \(-0.624601\pi\)
−0.381525 + 0.924359i \(0.624601\pi\)
\(920\) −2.85685 −0.0941877
\(921\) −12.7033 −0.418588
\(922\) −61.5374 −2.02663
\(923\) −17.4676 −0.574954
\(924\) 17.1645 0.564670
\(925\) 35.8582 1.17901
\(926\) −44.5677 −1.46459
\(927\) −14.9400 −0.490693
\(928\) −141.690 −4.65120
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 85.1184 2.78815
\(933\) −29.3137 −0.959689
\(934\) −102.619 −3.35781
\(935\) 2.24796 0.0735162
\(936\) −31.5153 −1.03011
\(937\) 19.7267 0.644442 0.322221 0.946665i \(-0.395571\pi\)
0.322221 + 0.946665i \(0.395571\pi\)
\(938\) 38.5511 1.25874
\(939\) 0.640498 0.0209019
\(940\) −21.4262 −0.698847
\(941\) 8.82326 0.287630 0.143815 0.989605i \(-0.454063\pi\)
0.143815 + 0.989605i \(0.454063\pi\)
\(942\) −12.7009 −0.413816
\(943\) −0.0561111 −0.00182723
\(944\) 6.03847 0.196536
\(945\) −5.94301 −0.193326
\(946\) −10.8103 −0.351473
\(947\) −15.5612 −0.505670 −0.252835 0.967509i \(-0.581363\pi\)
−0.252835 + 0.967509i \(0.581363\pi\)
\(948\) −72.0834 −2.34116
\(949\) 27.5527 0.894399
\(950\) −31.9806 −1.03759
\(951\) 7.92013 0.256828
\(952\) 41.5457 1.34650
\(953\) −9.65172 −0.312650 −0.156325 0.987706i \(-0.549965\pi\)
−0.156325 + 0.987706i \(0.549965\pi\)
\(954\) −7.42345 −0.240343
\(955\) 0.728916 0.0235872
\(956\) −95.6945 −3.09498
\(957\) −15.4322 −0.498853
\(958\) 90.6172 2.92771
\(959\) 14.0634 0.454131
\(960\) −18.1105 −0.584514
\(961\) 0 0
\(962\) −76.4790 −2.46578
\(963\) 12.2020 0.393205
\(964\) 95.1632 3.06500
\(965\) 7.74263 0.249244
\(966\) −3.55525 −0.114388
\(967\) −28.3976 −0.913204 −0.456602 0.889671i \(-0.650934\pi\)
−0.456602 + 0.889671i \(0.650934\pi\)
\(968\) 80.2114 2.57809
\(969\) 10.0676 0.323418
\(970\) 2.09356 0.0672202
\(971\) −22.1271 −0.710092 −0.355046 0.934849i \(-0.615535\pi\)
−0.355046 + 0.934849i \(0.615535\pi\)
\(972\) −51.1920 −1.64198
\(973\) −2.33709 −0.0749238
\(974\) −55.6235 −1.78229
\(975\) −24.1183 −0.772403
\(976\) 66.2434 2.12040
\(977\) −19.9123 −0.637051 −0.318525 0.947914i \(-0.603188\pi\)
−0.318525 + 0.947914i \(0.603188\pi\)
\(978\) 6.64424 0.212460
\(979\) 20.4839 0.654667
\(980\) −12.8013 −0.408921
\(981\) −7.10845 −0.226955
\(982\) 66.5349 2.12322
\(983\) 24.9304 0.795156 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(984\) −1.28586 −0.0409918
\(985\) 1.80605 0.0575454
\(986\) −60.4320 −1.92455
\(987\) −16.4811 −0.524598
\(988\) 49.3586 1.57031
\(989\) 1.62032 0.0515231
\(990\) 2.15814 0.0685901
\(991\) 42.0512 1.33580 0.667900 0.744251i \(-0.267193\pi\)
0.667900 + 0.744251i \(0.267193\pi\)
\(992\) 0 0
\(993\) 34.3515 1.09011
\(994\) 22.1069 0.701189
\(995\) 8.02096 0.254282
\(996\) −124.001 −3.92912
\(997\) 14.4647 0.458100 0.229050 0.973415i \(-0.426438\pi\)
0.229050 + 0.973415i \(0.426438\pi\)
\(998\) −66.0707 −2.09143
\(999\) −43.8114 −1.38613
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.j.1.1 8
3.2 odd 2 8649.2.a.be.1.8 8
31.2 even 5 961.2.d.n.531.1 16
31.3 odd 30 961.2.g.k.846.1 16
31.4 even 5 961.2.d.q.388.4 16
31.5 even 3 961.2.c.i.521.1 16
31.6 odd 6 961.2.c.j.439.1 16
31.7 even 15 961.2.g.m.235.2 16
31.8 even 5 961.2.d.q.374.4 16
31.9 even 15 961.2.g.m.732.2 16
31.10 even 15 961.2.g.j.844.1 16
31.11 odd 30 961.2.g.t.338.2 16
31.12 odd 30 31.2.g.a.20.1 yes 16
31.13 odd 30 31.2.g.a.14.1 16
31.14 even 15 961.2.g.n.816.2 16
31.15 odd 10 961.2.d.o.628.1 16
31.16 even 5 961.2.d.n.628.1 16
31.17 odd 30 961.2.g.t.816.2 16
31.18 even 15 961.2.g.l.448.1 16
31.19 even 15 961.2.g.l.547.1 16
31.20 even 15 961.2.g.n.338.2 16
31.21 odd 30 961.2.g.k.844.1 16
31.22 odd 30 961.2.g.s.732.2 16
31.23 odd 10 961.2.d.p.374.4 16
31.24 odd 30 961.2.g.s.235.2 16
31.25 even 3 961.2.c.i.439.1 16
31.26 odd 6 961.2.c.j.521.1 16
31.27 odd 10 961.2.d.p.388.4 16
31.28 even 15 961.2.g.j.846.1 16
31.29 odd 10 961.2.d.o.531.1 16
31.30 odd 2 961.2.a.i.1.1 8
93.44 even 30 279.2.y.c.262.2 16
93.74 even 30 279.2.y.c.82.2 16
93.92 even 2 8649.2.a.bf.1.8 8
124.43 even 30 496.2.bg.c.113.1 16
124.75 even 30 496.2.bg.c.417.1 16
155.12 even 60 775.2.ck.a.299.4 32
155.13 even 60 775.2.ck.a.324.4 32
155.43 even 60 775.2.ck.a.299.1 32
155.44 odd 30 775.2.bl.a.76.2 16
155.74 odd 30 775.2.bl.a.51.2 16
155.137 even 60 775.2.ck.a.324.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.13 odd 30
31.2.g.a.20.1 yes 16 31.12 odd 30
279.2.y.c.82.2 16 93.74 even 30
279.2.y.c.262.2 16 93.44 even 30
496.2.bg.c.113.1 16 124.43 even 30
496.2.bg.c.417.1 16 124.75 even 30
775.2.bl.a.51.2 16 155.74 odd 30
775.2.bl.a.76.2 16 155.44 odd 30
775.2.ck.a.299.1 32 155.43 even 60
775.2.ck.a.299.4 32 155.12 even 60
775.2.ck.a.324.1 32 155.137 even 60
775.2.ck.a.324.4 32 155.13 even 60
961.2.a.i.1.1 8 31.30 odd 2
961.2.a.j.1.1 8 1.1 even 1 trivial
961.2.c.i.439.1 16 31.25 even 3
961.2.c.i.521.1 16 31.5 even 3
961.2.c.j.439.1 16 31.6 odd 6
961.2.c.j.521.1 16 31.26 odd 6
961.2.d.n.531.1 16 31.2 even 5
961.2.d.n.628.1 16 31.16 even 5
961.2.d.o.531.1 16 31.29 odd 10
961.2.d.o.628.1 16 31.15 odd 10
961.2.d.p.374.4 16 31.23 odd 10
961.2.d.p.388.4 16 31.27 odd 10
961.2.d.q.374.4 16 31.8 even 5
961.2.d.q.388.4 16 31.4 even 5
961.2.g.j.844.1 16 31.10 even 15
961.2.g.j.846.1 16 31.28 even 15
961.2.g.k.844.1 16 31.21 odd 30
961.2.g.k.846.1 16 31.3 odd 30
961.2.g.l.448.1 16 31.18 even 15
961.2.g.l.547.1 16 31.19 even 15
961.2.g.m.235.2 16 31.7 even 15
961.2.g.m.732.2 16 31.9 even 15
961.2.g.n.338.2 16 31.20 even 15
961.2.g.n.816.2 16 31.14 even 15
961.2.g.s.235.2 16 31.24 odd 30
961.2.g.s.732.2 16 31.22 odd 30
961.2.g.t.338.2 16 31.11 odd 30
961.2.g.t.816.2 16 31.17 odd 30
8649.2.a.be.1.8 8 3.2 odd 2
8649.2.a.bf.1.8 8 93.92 even 2