Properties

Label 961.2.a.j.1.1
Level 961961
Weight 22
Character 961.1
Self dual yes
Analytic conductor 7.6747.674
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 961=312 961 = 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.673623634257.67362363425
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x79x6+19x5+14x428x311x2+6x+1 x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.280642.28064 of defining polynomial
Character χ\chi == 961.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.69016q21.41916q3+5.23694q4+0.608384q5+3.81777q61.72688q78.70786q80.985973q91.63665q10+1.33739q117.43207q123.67067q13+4.64557q140.863396q15+12.9516q16+2.76282q17+2.65242q182.56768q19+3.18607q20+2.45072q213.59779q22+0.539261q23+12.3579q244.62987q25+9.87466q26+5.65675q279.04356q28+8.13087q29+2.32267q3017.4262q321.89798q337.43241q341.05061q355.16348q367.74498q37+6.90745q38+5.20928q395.29772q400.104052q416.59283q42+3.00470q43+7.00384q440.599850q451.45070q466.72498q4718.3805q484.01789q49+12.4551q503.92089q5119.2230q522.79875q5315.2175q54+0.813648q55+15.0374q56+3.64396q5721.8733q58+0.466233q594.52155q60+5.11468q61+1.70266q63+20.9759q642.23317q65+5.10586q66+8.29847q67+14.4687q680.765299q69+2.82629q70+4.75871q71+8.58572q727.50619q73+20.8352q74+6.57054q7513.4468q762.30951q7714.0138q78+9.69896q79+7.87956q805.06994q81+0.279916q82+16.6846q83+12.8343q84+1.68085q858.08312q8611.5390q8711.6458q88+15.3163q89+1.61369q90+6.33879q91+2.82407q92+18.0912q941.56213q95+24.7306q961.27918q97+10.8087q981.31863q99+O(q100)q-2.69016 q^{2} -1.41916 q^{3} +5.23694 q^{4} +0.608384 q^{5} +3.81777 q^{6} -1.72688 q^{7} -8.70786 q^{8} -0.985973 q^{9} -1.63665 q^{10} +1.33739 q^{11} -7.43207 q^{12} -3.67067 q^{13} +4.64557 q^{14} -0.863396 q^{15} +12.9516 q^{16} +2.76282 q^{17} +2.65242 q^{18} -2.56768 q^{19} +3.18607 q^{20} +2.45072 q^{21} -3.59779 q^{22} +0.539261 q^{23} +12.3579 q^{24} -4.62987 q^{25} +9.87466 q^{26} +5.65675 q^{27} -9.04356 q^{28} +8.13087 q^{29} +2.32267 q^{30} -17.4262 q^{32} -1.89798 q^{33} -7.43241 q^{34} -1.05061 q^{35} -5.16348 q^{36} -7.74498 q^{37} +6.90745 q^{38} +5.20928 q^{39} -5.29772 q^{40} -0.104052 q^{41} -6.59283 q^{42} +3.00470 q^{43} +7.00384 q^{44} -0.599850 q^{45} -1.45070 q^{46} -6.72498 q^{47} -18.3805 q^{48} -4.01789 q^{49} +12.4551 q^{50} -3.92089 q^{51} -19.2230 q^{52} -2.79875 q^{53} -15.2175 q^{54} +0.813648 q^{55} +15.0374 q^{56} +3.64396 q^{57} -21.8733 q^{58} +0.466233 q^{59} -4.52155 q^{60} +5.11468 q^{61} +1.70266 q^{63} +20.9759 q^{64} -2.23317 q^{65} +5.10586 q^{66} +8.29847 q^{67} +14.4687 q^{68} -0.765299 q^{69} +2.82629 q^{70} +4.75871 q^{71} +8.58572 q^{72} -7.50619 q^{73} +20.8352 q^{74} +6.57054 q^{75} -13.4468 q^{76} -2.30951 q^{77} -14.0138 q^{78} +9.69896 q^{79} +7.87956 q^{80} -5.06994 q^{81} +0.279916 q^{82} +16.6846 q^{83} +12.8343 q^{84} +1.68085 q^{85} -8.08312 q^{86} -11.5390 q^{87} -11.6458 q^{88} +15.3163 q^{89} +1.61369 q^{90} +6.33879 q^{91} +2.82407 q^{92} +18.0912 q^{94} -1.56213 q^{95} +24.7306 q^{96} -1.27918 q^{97} +10.8087 q^{98} -1.31863 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q2+3q3+8q4+3q5+11q62q79q8+5q913q10+18q11+8q139q14+18q15+4q16+14q17+23q186q197q20q21++6q99+O(q100) 8 q + 2 q^{2} + 3 q^{3} + 8 q^{4} + 3 q^{5} + 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} + 18 q^{11} + 8 q^{13} - 9 q^{14} + 18 q^{15} + 4 q^{16} + 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} - q^{21}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.69016 −1.90223 −0.951114 0.308841i 0.900059π-0.900059\pi
−0.951114 + 0.308841i 0.900059π0.900059\pi
33 −1.41916 −0.819355 −0.409677 0.912230i 0.634359π-0.634359\pi
−0.409677 + 0.912230i 0.634359π0.634359\pi
44 5.23694 2.61847
55 0.608384 0.272077 0.136039 0.990704i 0.456563π-0.456563\pi
0.136039 + 0.990704i 0.456563π0.456563\pi
66 3.81777 1.55860
77 −1.72688 −0.652699 −0.326349 0.945249i 0.605819π-0.605819\pi
−0.326349 + 0.945249i 0.605819π0.605819\pi
88 −8.70786 −3.07869
99 −0.985973 −0.328658
1010 −1.63665 −0.517553
1111 1.33739 0.403239 0.201619 0.979464i 0.435380π-0.435380\pi
0.201619 + 0.979464i 0.435380π0.435380\pi
1212 −7.43207 −2.14545
1313 −3.67067 −1.01806 −0.509030 0.860749i 0.669996π-0.669996\pi
−0.509030 + 0.860749i 0.669996π0.669996\pi
1414 4.64557 1.24158
1515 −0.863396 −0.222928
1616 12.9516 3.23791
1717 2.76282 0.670082 0.335041 0.942204i 0.391250π-0.391250\pi
0.335041 + 0.942204i 0.391250π0.391250\pi
1818 2.65242 0.625181
1919 −2.56768 −0.589066 −0.294533 0.955641i 0.595164π-0.595164\pi
−0.294533 + 0.955641i 0.595164π0.595164\pi
2020 3.18607 0.712426
2121 2.45072 0.534792
2222 −3.59779 −0.767052
2323 0.539261 0.112444 0.0562218 0.998418i 0.482095π-0.482095\pi
0.0562218 + 0.998418i 0.482095π0.482095\pi
2424 12.3579 2.52254
2525 −4.62987 −0.925974
2626 9.87466 1.93658
2727 5.65675 1.08864
2828 −9.04356 −1.70907
2929 8.13087 1.50986 0.754932 0.655803i 0.227670π-0.227670\pi
0.754932 + 0.655803i 0.227670π0.227670\pi
3030 2.32267 0.424060
3131 0 0
3232 −17.4262 −3.08054
3333 −1.89798 −0.330396
3434 −7.43241 −1.27465
3535 −1.05061 −0.177585
3636 −5.16348 −0.860580
3737 −7.74498 −1.27327 −0.636633 0.771167i 0.719673π-0.719673\pi
−0.636633 + 0.771167i 0.719673π0.719673\pi
3838 6.90745 1.12054
3939 5.20928 0.834152
4040 −5.29772 −0.837643
4141 −0.104052 −0.0162502 −0.00812508 0.999967i 0.502586π-0.502586\pi
−0.00812508 + 0.999967i 0.502586π0.502586\pi
4242 −6.59283 −1.01730
4343 3.00470 0.458213 0.229106 0.973401i 0.426420π-0.426420\pi
0.229106 + 0.973401i 0.426420π0.426420\pi
4444 7.00384 1.05587
4545 −0.599850 −0.0894203
4646 −1.45070 −0.213893
4747 −6.72498 −0.980939 −0.490470 0.871458i 0.663175π-0.663175\pi
−0.490470 + 0.871458i 0.663175π0.663175\pi
4848 −18.3805 −2.65300
4949 −4.01789 −0.573984
5050 12.4551 1.76141
5151 −3.92089 −0.549035
5252 −19.2230 −2.66576
5353 −2.79875 −0.384437 −0.192219 0.981352i 0.561568π-0.561568\pi
−0.192219 + 0.981352i 0.561568π0.561568\pi
5454 −15.2175 −2.07084
5555 0.813648 0.109712
5656 15.0374 2.00946
5757 3.64396 0.482654
5858 −21.8733 −2.87210
5959 0.466233 0.0606983 0.0303492 0.999539i 0.490338π-0.490338\pi
0.0303492 + 0.999539i 0.490338π0.490338\pi
6060 −4.52155 −0.583730
6161 5.11468 0.654867 0.327434 0.944874i 0.393816π-0.393816\pi
0.327434 + 0.944874i 0.393816π0.393816\pi
6262 0 0
6363 1.70266 0.214514
6464 20.9759 2.62198
6565 −2.23317 −0.276991
6666 5.10586 0.628488
6767 8.29847 1.01382 0.506910 0.861999i 0.330788π-0.330788\pi
0.506910 + 0.861999i 0.330788π0.330788\pi
6868 14.4687 1.75459
6969 −0.765299 −0.0921312
7070 2.82629 0.337806
7171 4.75871 0.564755 0.282377 0.959303i 0.408877π-0.408877\pi
0.282377 + 0.959303i 0.408877π0.408877\pi
7272 8.58572 1.01184
7373 −7.50619 −0.878533 −0.439267 0.898357i 0.644762π-0.644762\pi
−0.439267 + 0.898357i 0.644762π0.644762\pi
7474 20.8352 2.42204
7575 6.57054 0.758701
7676 −13.4468 −1.54245
7777 −2.30951 −0.263194
7878 −14.0138 −1.58675
7979 9.69896 1.09122 0.545609 0.838040i 0.316298π-0.316298\pi
0.545609 + 0.838040i 0.316298π0.316298\pi
8080 7.87956 0.880962
8181 −5.06994 −0.563327
8282 0.279916 0.0309115
8383 16.6846 1.83137 0.915686 0.401895i 0.131648π-0.131648\pi
0.915686 + 0.401895i 0.131648π0.131648\pi
8484 12.8343 1.40034
8585 1.68085 0.182314
8686 −8.08312 −0.871625
8787 −11.5390 −1.23711
8888 −11.6458 −1.24145
8989 15.3163 1.62352 0.811761 0.583990i 0.198509π-0.198509\pi
0.811761 + 0.583990i 0.198509π0.198509\pi
9090 1.61369 0.170098
9191 6.33879 0.664486
9292 2.82407 0.294430
9393 0 0
9494 18.0912 1.86597
9595 −1.56213 −0.160271
9696 24.7306 2.52406
9797 −1.27918 −0.129881 −0.0649404 0.997889i 0.520686π-0.520686\pi
−0.0649404 + 0.997889i 0.520686π0.520686\pi
9898 10.8087 1.09185
9999 −1.31863 −0.132528
100100 −24.2463 −2.42463
101101 8.12024 0.807994 0.403997 0.914760i 0.367621π-0.367621\pi
0.403997 + 0.914760i 0.367621π0.367621\pi
102102 10.5478 1.04439
103103 15.1525 1.49302 0.746511 0.665374i 0.231728π-0.231728\pi
0.746511 + 0.665374i 0.231728π0.231728\pi
104104 31.9636 3.13429
105105 1.49098 0.145505
106106 7.52906 0.731287
107107 −12.3756 −1.19640 −0.598198 0.801348i 0.704116π-0.704116\pi
−0.598198 + 0.801348i 0.704116π0.704116\pi
108108 29.6240 2.85057
109109 7.20958 0.690553 0.345276 0.938501i 0.387785π-0.387785\pi
0.345276 + 0.938501i 0.387785π0.387785\pi
110110 −2.18884 −0.208698
111111 10.9914 1.04326
112112 −22.3659 −2.11338
113113 16.6718 1.56835 0.784176 0.620539i 0.213086π-0.213086\pi
0.784176 + 0.620539i 0.213086π0.213086\pi
114114 −9.80281 −0.918117
115115 0.328077 0.0305934
116116 42.5808 3.95353
117117 3.61918 0.334593
118118 −1.25424 −0.115462
119119 −4.77105 −0.437362
120120 7.51834 0.686327
121121 −9.21138 −0.837398
122122 −13.7593 −1.24571
123123 0.147667 0.0133147
124124 0 0
125125 −5.85866 −0.524014
126126 −4.58041 −0.408055
127127 12.9094 1.14553 0.572764 0.819721i 0.305871π-0.305871\pi
0.572764 + 0.819721i 0.305871π0.305871\pi
128128 −21.5760 −1.90707
129129 −4.26417 −0.375439
130130 6.00758 0.526900
131131 −2.43778 −0.212990 −0.106495 0.994313i 0.533963π-0.533963\pi
−0.106495 + 0.994313i 0.533963π0.533963\pi
132132 −9.93960 −0.865131
133133 4.43407 0.384482
134134 −22.3242 −1.92851
135135 3.44147 0.296195
136136 −24.0583 −2.06298
137137 −8.14382 −0.695774 −0.347887 0.937536i 0.613101π-0.613101\pi
−0.347887 + 0.937536i 0.613101π0.613101\pi
138138 2.05877 0.175255
139139 1.35336 0.114791 0.0573954 0.998352i 0.481720π-0.481720\pi
0.0573954 + 0.998352i 0.481720π0.481720\pi
140140 −5.50195 −0.465000
141141 9.54385 0.803737
142142 −12.8017 −1.07429
143143 −4.90912 −0.410521
144144 −12.7700 −1.06416
145145 4.94669 0.410800
146146 20.1928 1.67117
147147 5.70204 0.470297
148148 −40.5600 −3.33401
149149 −9.00385 −0.737624 −0.368812 0.929504i 0.620235π-0.620235\pi
−0.368812 + 0.929504i 0.620235π0.620235\pi
150150 −17.6758 −1.44322
151151 3.20841 0.261097 0.130548 0.991442i 0.458326π-0.458326\pi
0.130548 + 0.991442i 0.458326π0.458326\pi
152152 22.3590 1.81355
153153 −2.72407 −0.220228
154154 6.21295 0.500654
155155 0 0
156156 27.2807 2.18420
157157 −3.32677 −0.265505 −0.132753 0.991149i 0.542382π-0.542382\pi
−0.132753 + 0.991149i 0.542382π0.542382\pi
158158 −26.0917 −2.07574
159159 3.97188 0.314991
160160 −10.6018 −0.838146
161161 −0.931238 −0.0733918
162162 13.6389 1.07158
163163 1.74035 0.136314 0.0681572 0.997675i 0.478288π-0.478288\pi
0.0681572 + 0.997675i 0.478288π0.478288\pi
164164 −0.544913 −0.0425506
165165 −1.15470 −0.0898933
166166 −44.8841 −3.48368
167167 14.0165 1.08463 0.542314 0.840176i 0.317548π-0.317548\pi
0.542314 + 0.840176i 0.317548π0.317548\pi
168168 −21.3406 −1.64646
169169 0.473782 0.0364447
170170 −4.52176 −0.346803
171171 2.53166 0.193601
172172 15.7354 1.19982
173173 −0.0119809 −0.000910890 0 −0.000455445 1.00000i 0.500145π-0.500145\pi
−0.000455445 1.00000i 0.500145π0.500145\pi
174174 31.0418 2.35327
175175 7.99522 0.604382
176176 17.3214 1.30565
177177 −0.661661 −0.0497335
178178 −41.2032 −3.08831
179179 9.97800 0.745791 0.372896 0.927873i 0.378365π-0.378365\pi
0.372896 + 0.927873i 0.378365π0.378365\pi
180180 −3.14138 −0.234144
181181 18.6032 1.38276 0.691381 0.722490i 0.257003π-0.257003\pi
0.691381 + 0.722490i 0.257003π0.257003\pi
182182 −17.0523 −1.26400
183183 −7.25857 −0.536569
184184 −4.69581 −0.346180
185185 −4.71192 −0.346427
186186 0 0
187187 3.69497 0.270203
188188 −35.2183 −2.56856
189189 −9.76852 −0.710556
190190 4.20238 0.304873
191191 1.19812 0.0866928 0.0433464 0.999060i 0.486198π-0.486198\pi
0.0433464 + 0.999060i 0.486198π0.486198\pi
192192 −29.7682 −2.14834
193193 12.7266 0.916078 0.458039 0.888932i 0.348552π-0.348552\pi
0.458039 + 0.888932i 0.348552π0.348552\pi
194194 3.44118 0.247063
195195 3.16924 0.226954
196196 −21.0414 −1.50296
197197 2.96860 0.211504 0.105752 0.994393i 0.466275π-0.466275\pi
0.105752 + 0.994393i 0.466275π0.466275\pi
198198 3.54733 0.252098
199199 13.1841 0.934593 0.467296 0.884101i 0.345228π-0.345228\pi
0.467296 + 0.884101i 0.345228π0.345228\pi
200200 40.3163 2.85079
201201 −11.7769 −0.830678
202202 −21.8447 −1.53699
203203 −14.0410 −0.985487
204204 −20.5335 −1.43763
205205 −0.0633035 −0.00442131
206206 −40.7626 −2.84007
207207 −0.531696 −0.0369555
208208 −47.5411 −3.29638
209209 −3.43399 −0.237534
210210 −4.01097 −0.276783
211211 18.3323 1.26205 0.631023 0.775764i 0.282635π-0.282635\pi
0.631023 + 0.775764i 0.282635π0.282635\pi
212212 −14.6569 −1.00664
213213 −6.75339 −0.462735
214214 33.2923 2.27582
215215 1.82801 0.124669
216216 −49.2582 −3.35160
217217 0 0
218218 −19.3949 −1.31359
219219 10.6525 0.719830
220220 4.26102 0.287278
221221 −10.1414 −0.682183
222222 −29.5686 −1.98451
223223 −9.39601 −0.629203 −0.314602 0.949224i 0.601871π-0.601871\pi
−0.314602 + 0.949224i 0.601871π0.601871\pi
224224 30.0929 2.01067
225225 4.56493 0.304328
226226 −44.8497 −2.98336
227227 8.45942 0.561472 0.280736 0.959785i 0.409422π-0.409422\pi
0.280736 + 0.959785i 0.409422π0.409422\pi
228228 19.0832 1.26381
229229 −22.8434 −1.50954 −0.754768 0.655991i 0.772251π-0.772251\pi
−0.754768 + 0.655991i 0.772251π0.772251\pi
230230 −0.882579 −0.0581956
231231 3.27758 0.215649
232232 −70.8025 −4.64841
233233 16.2535 1.06480 0.532400 0.846493i 0.321290π-0.321290\pi
0.532400 + 0.846493i 0.321290π0.321290\pi
234234 −9.73615 −0.636472
235235 −4.09137 −0.266891
236236 2.44163 0.158937
237237 −13.7644 −0.894095
238238 12.8349 0.831962
239239 −18.2730 −1.18198 −0.590991 0.806678i 0.701263π-0.701263\pi
−0.590991 + 0.806678i 0.701263π0.701263\pi
240240 −11.1824 −0.721820
241241 18.1715 1.17053 0.585266 0.810841i 0.300990π-0.300990\pi
0.585266 + 0.810841i 0.300990π0.300990\pi
242242 24.7800 1.59292
243243 −9.77517 −0.627078
244244 26.7852 1.71475
245245 −2.44442 −0.156168
246246 −0.397246 −0.0253275
247247 9.42508 0.599704
248248 0 0
249249 −23.6782 −1.50054
250250 15.7607 0.996794
251251 22.9302 1.44734 0.723671 0.690145i 0.242453π-0.242453\pi
0.723671 + 0.690145i 0.242453π0.242453\pi
252252 8.91670 0.561699
253253 0.721203 0.0453417
254254 −34.7284 −2.17905
255255 −2.38541 −0.149380
256256 16.0910 1.00569
257257 0.106193 0.00662414 0.00331207 0.999995i 0.498946π-0.498946\pi
0.00331207 + 0.999995i 0.498946π0.498946\pi
258258 11.4713 0.714170
259259 13.3746 0.831060
260260 −11.6950 −0.725292
261261 −8.01681 −0.496228
262262 6.55802 0.405156
263263 7.29731 0.449971 0.224986 0.974362i 0.427766π-0.427766\pi
0.224986 + 0.974362i 0.427766π0.427766\pi
264264 16.5273 1.01719
265265 −1.70271 −0.104597
266266 −11.9283 −0.731373
267267 −21.7363 −1.33024
268268 43.4586 2.65465
269269 −16.2194 −0.988912 −0.494456 0.869203i 0.664633π-0.664633\pi
−0.494456 + 0.869203i 0.664633π0.664633\pi
270270 −9.25810 −0.563430
271271 5.14564 0.312575 0.156288 0.987712i 0.450047π-0.450047\pi
0.156288 + 0.987712i 0.450047π0.450047\pi
272272 35.7830 2.16966
273273 −8.99579 −0.544450
274274 21.9082 1.32352
275275 −6.19195 −0.373389
276276 −4.00782 −0.241243
277277 16.9228 1.01679 0.508397 0.861123i 0.330238π-0.330238\pi
0.508397 + 0.861123i 0.330238π0.330238\pi
278278 −3.64076 −0.218358
279279 0 0
280280 9.14853 0.546729
281281 1.90667 0.113742 0.0568711 0.998382i 0.481888π-0.481888\pi
0.0568711 + 0.998382i 0.481888π0.481888\pi
282282 −25.6744 −1.52889
283283 −15.3098 −0.910074 −0.455037 0.890473i 0.650374π-0.650374\pi
−0.455037 + 0.890473i 0.650374π0.650374\pi
284284 24.9211 1.47879
285285 2.21692 0.131319
286286 13.2063 0.780905
287287 0.179685 0.0106065
288288 17.1817 1.01244
289289 −9.36683 −0.550990
290290 −13.3074 −0.781435
291291 1.81536 0.106418
292292 −39.3094 −2.30041
293293 26.7937 1.56530 0.782651 0.622460i 0.213867π-0.213867\pi
0.782651 + 0.622460i 0.213867π0.213867\pi
294294 −15.3394 −0.894611
295295 0.283648 0.0165146
296296 67.4422 3.92000
297297 7.56529 0.438983
298298 24.2218 1.40313
299299 −1.97945 −0.114474
300300 34.4095 1.98663
301301 −5.18876 −0.299075
302302 −8.63112 −0.496665
303303 −11.5240 −0.662034
304304 −33.2556 −1.90734
305305 3.11169 0.178175
306306 7.32816 0.418923
307307 8.95126 0.510875 0.255438 0.966826i 0.417780π-0.417780\pi
0.255438 + 0.966826i 0.417780π0.417780\pi
308308 −12.0948 −0.689164
309309 −21.5039 −1.22331
310310 0 0
311311 20.6556 1.17127 0.585637 0.810574i 0.300844π-0.300844\pi
0.585637 + 0.810574i 0.300844π0.300844\pi
312312 −45.3617 −2.56810
313313 −0.451321 −0.0255102 −0.0127551 0.999919i 0.504060π-0.504060\pi
−0.0127551 + 0.999919i 0.504060π0.504060\pi
314314 8.94953 0.505051
315315 1.03587 0.0583646
316316 50.7928 2.85732
317317 −5.58084 −0.313451 −0.156726 0.987642i 0.550094π-0.550094\pi
−0.156726 + 0.987642i 0.550094π0.550094\pi
318318 −10.6850 −0.599184
319319 10.8742 0.608836
320320 12.7614 0.713383
321321 17.5630 0.980273
322322 2.50517 0.139608
323323 −7.09403 −0.394722
324324 −26.5509 −1.47505
325325 16.9947 0.942696
326326 −4.68180 −0.259301
327327 −10.2316 −0.565808
328328 0.906069 0.0500293
329329 11.6132 0.640258
330330 3.10632 0.170997
331331 −24.2055 −1.33045 −0.665226 0.746642i 0.731665π-0.731665\pi
−0.665226 + 0.746642i 0.731665π0.731665\pi
332332 87.3761 4.79539
333333 7.63634 0.418469
334334 −37.7065 −2.06321
335335 5.04865 0.275837
336336 31.7409 1.73161
337337 −11.0360 −0.601168 −0.300584 0.953755i 0.597182π-0.597182\pi
−0.300584 + 0.953755i 0.597182π0.597182\pi
338338 −1.27455 −0.0693262
339339 −23.6600 −1.28504
340340 8.80253 0.477384
341341 0 0
342342 −6.81056 −0.368273
343343 19.0266 1.02734
344344 −26.1645 −1.41070
345345 −0.465596 −0.0250668
346346 0.0322304 0.00173272
347347 18.5674 0.996749 0.498375 0.866962i 0.333930π-0.333930\pi
0.498375 + 0.866962i 0.333930π0.333930\pi
348348 −60.4292 −3.23935
349349 −32.1746 −1.72227 −0.861134 0.508378i 0.830245π-0.830245\pi
−0.861134 + 0.508378i 0.830245π0.830245\pi
350350 −21.5084 −1.14967
351351 −20.7640 −1.10830
352352 −23.3056 −1.24219
353353 −32.2134 −1.71455 −0.857273 0.514863i 0.827843π-0.827843\pi
−0.857273 + 0.514863i 0.827843π0.827843\pi
354354 1.77997 0.0946043
355355 2.89512 0.153657
356356 80.2104 4.25114
357357 6.77091 0.358355
358358 −26.8424 −1.41866
359359 21.1623 1.11690 0.558451 0.829538i 0.311396π-0.311396\pi
0.558451 + 0.829538i 0.311396π0.311396\pi
360360 5.22341 0.275298
361361 −12.4070 −0.653002
362362 −50.0454 −2.63033
363363 13.0725 0.686126
364364 33.1959 1.73994
365365 −4.56664 −0.239029
366366 19.5267 1.02068
367367 −12.9964 −0.678408 −0.339204 0.940713i 0.610158π-0.610158\pi
−0.339204 + 0.940713i 0.610158π0.610158\pi
368368 6.98431 0.364082
369369 0.102592 0.00534074
370370 12.6758 0.658983
371371 4.83309 0.250922
372372 0 0
373373 −4.42592 −0.229166 −0.114583 0.993414i 0.536553π-0.536553\pi
−0.114583 + 0.993414i 0.536553π0.536553\pi
374374 −9.94005 −0.513988
375375 8.31439 0.429354
376376 58.5602 3.02001
377377 −29.8457 −1.53713
378378 26.2788 1.35164
379379 −14.9557 −0.768225 −0.384112 0.923286i 0.625492π-0.625492\pi
−0.384112 + 0.923286i 0.625492π0.625492\pi
380380 −8.18079 −0.419666
381381 −18.3206 −0.938593
382382 −3.22312 −0.164909
383383 11.6503 0.595305 0.297652 0.954674i 0.403796π-0.403796\pi
0.297652 + 0.954674i 0.403796π0.403796\pi
384384 30.6199 1.56256
385385 −1.40507 −0.0716091
386386 −34.2364 −1.74259
387387 −2.96256 −0.150595
388388 −6.69897 −0.340089
389389 −14.4019 −0.730207 −0.365103 0.930967i 0.618966π-0.618966\pi
−0.365103 + 0.930967i 0.618966π0.618966\pi
390390 −8.52575 −0.431718
391391 1.48988 0.0753465
392392 34.9872 1.76712
393393 3.45962 0.174515
394394 −7.98598 −0.402328
395395 5.90069 0.296896
396396 −6.90560 −0.347019
397397 15.7901 0.792484 0.396242 0.918146i 0.370314π-0.370314\pi
0.396242 + 0.918146i 0.370314π0.370314\pi
398398 −35.4672 −1.77781
399399 −6.29267 −0.315028
400400 −59.9644 −2.99822
401401 −31.0232 −1.54923 −0.774613 0.632436i 0.782055π-0.782055\pi
−0.774613 + 0.632436i 0.782055π0.782055\pi
402402 31.6817 1.58014
403403 0 0
404404 42.5252 2.11571
405405 −3.08447 −0.153268
406406 37.7725 1.87462
407407 −10.3581 −0.513431
408408 34.1426 1.69031
409409 −6.58582 −0.325648 −0.162824 0.986655i 0.552060π-0.552060\pi
−0.162824 + 0.986655i 0.552060π0.552060\pi
410410 0.170296 0.00841033
411411 11.5574 0.570086
412412 79.3527 3.90943
413413 −0.805127 −0.0396177
414414 1.43035 0.0702977
415415 10.1506 0.498275
416416 63.9657 3.13618
417417 −1.92064 −0.0940544
418418 9.23797 0.451844
419419 −14.6720 −0.716773 −0.358387 0.933573i 0.616673π-0.616673\pi
−0.358387 + 0.933573i 0.616673π0.616673\pi
420420 7.80817 0.381000
421421 −26.7159 −1.30205 −0.651026 0.759056i 0.725661π-0.725661\pi
−0.651026 + 0.759056i 0.725661π0.725661\pi
422422 −49.3167 −2.40070
423423 6.63065 0.322393
424424 24.3711 1.18356
425425 −12.7915 −0.620479
426426 18.1677 0.880226
427427 −8.83243 −0.427431
428428 −64.8103 −3.13272
429429 6.96685 0.336363
430430 −4.91764 −0.237150
431431 3.98801 0.192096 0.0960478 0.995377i 0.469380π-0.469380\pi
0.0960478 + 0.995377i 0.469380π0.469380\pi
432432 73.2642 3.52492
433433 −18.0766 −0.868704 −0.434352 0.900743i 0.643023π-0.643023\pi
−0.434352 + 0.900743i 0.643023π0.643023\pi
434434 0 0
435435 −7.02016 −0.336591
436436 37.7561 1.80819
437437 −1.38465 −0.0662367
438438 −28.6569 −1.36928
439439 22.9086 1.09337 0.546684 0.837339i 0.315890π-0.315890\pi
0.546684 + 0.837339i 0.315890π0.315890\pi
440440 −7.08513 −0.337771
441441 3.96153 0.188644
442442 27.2819 1.29767
443443 −21.4913 −1.02108 −0.510542 0.859853i 0.670555π-0.670555\pi
−0.510542 + 0.859853i 0.670555π0.670555\pi
444444 57.5612 2.73174
445445 9.31817 0.441724
446446 25.2767 1.19689
447447 12.7779 0.604376
448448 −36.2228 −1.71137
449449 −18.7996 −0.887209 −0.443604 0.896223i 0.646300π-0.646300\pi
−0.443604 + 0.896223i 0.646300π0.646300\pi
450450 −12.2804 −0.578902
451451 −0.139158 −0.00655270
452452 87.3092 4.10668
453453 −4.55326 −0.213931
454454 −22.7572 −1.06805
455455 3.85642 0.180792
456456 −31.7311 −1.48594
457457 −4.10599 −0.192070 −0.0960351 0.995378i 0.530616π-0.530616\pi
−0.0960351 + 0.995378i 0.530616π0.530616\pi
458458 61.4524 2.87148
459459 15.6286 0.729480
460460 1.71812 0.0801078
461461 22.8750 1.06540 0.532698 0.846305i 0.321178π-0.321178\pi
0.532698 + 0.846305i 0.321178π0.321178\pi
462462 −8.81720 −0.410213
463463 16.5670 0.769932 0.384966 0.922931i 0.374213π-0.374213\pi
0.384966 + 0.922931i 0.374213π0.374213\pi
464464 105.308 4.88880
465465 0 0
466466 −43.7244 −2.02549
467467 38.1462 1.76520 0.882599 0.470127i 0.155792π-0.155792\pi
0.882599 + 0.470127i 0.155792π0.155792\pi
468468 18.9534 0.876121
469469 −14.3305 −0.661719
470470 11.0064 0.507688
471471 4.72123 0.217543
472472 −4.05989 −0.186872
473473 4.01847 0.184769
474474 37.0284 1.70077
475475 11.8880 0.545459
476476 −24.9857 −1.14522
477477 2.75949 0.126348
478478 49.1572 2.24840
479479 −33.6848 −1.53910 −0.769548 0.638589i 0.779518π-0.779518\pi
−0.769548 + 0.638589i 0.779518π0.779518\pi
480480 15.0457 0.686739
481481 28.4292 1.29626
482482 −48.8843 −2.22662
483483 1.32158 0.0601340
484484 −48.2394 −2.19270
485485 −0.778230 −0.0353376
486486 26.2967 1.19284
487487 20.6767 0.936950 0.468475 0.883477i 0.344804π-0.344804\pi
0.468475 + 0.883477i 0.344804π0.344804\pi
488488 −44.5379 −2.01614
489489 −2.46984 −0.111690
490490 6.57587 0.297067
491491 −24.7327 −1.11617 −0.558087 0.829783i 0.688464π-0.688464\pi
−0.558087 + 0.829783i 0.688464π0.688464\pi
492492 0.773321 0.0348640
493493 22.4641 1.01173
494494 −25.3549 −1.14077
495495 −0.802235 −0.0360578
496496 0 0
497497 −8.21771 −0.368615
498498 63.6980 2.85437
499499 24.5602 1.09946 0.549732 0.835341i 0.314730π-0.314730\pi
0.549732 + 0.835341i 0.314730π0.314730\pi
500500 −30.6814 −1.37211
501501 −19.8917 −0.888695
502502 −61.6858 −2.75317
503503 14.7391 0.657185 0.328593 0.944472i 0.393426π-0.393426\pi
0.328593 + 0.944472i 0.393426π0.393426\pi
504504 −14.8265 −0.660425
505505 4.94022 0.219837
506506 −1.94015 −0.0862501
507507 −0.672374 −0.0298612
508508 67.6059 2.99953
509509 −15.5063 −0.687304 −0.343652 0.939097i 0.611664π-0.611664\pi
−0.343652 + 0.939097i 0.611664π0.611664\pi
510510 6.41712 0.284155
511511 12.9623 0.573418
512512 −0.135395 −0.00598366
513513 −14.5247 −0.641282
514514 −0.285676 −0.0126006
515515 9.21854 0.406217
516516 −22.3312 −0.983075
517517 −8.99394 −0.395553
518518 −35.9799 −1.58086
519519 0.0170028 0.000746342 0
520520 19.4462 0.852771
521521 29.4146 1.28867 0.644337 0.764741i 0.277133π-0.277133\pi
0.644337 + 0.764741i 0.277133π0.277133\pi
522522 21.5665 0.943939
523523 −45.0260 −1.96885 −0.984424 0.175810i 0.943746π-0.943746\pi
−0.984424 + 0.175810i 0.943746π0.943746\pi
524524 −12.7665 −0.557708
525525 −11.3465 −0.495203
526526 −19.6309 −0.855947
527527 0 0
528528 −24.5819 −1.06979
529529 −22.7092 −0.987356
530530 4.58056 0.198967
531531 −0.459693 −0.0199490
532532 23.2209 1.00676
533533 0.381940 0.0165436
534534 58.4741 2.53042
535535 −7.52912 −0.325512
536536 −72.2619 −3.12124
537537 −14.1604 −0.611068
538538 43.6326 1.88114
539539 −5.37349 −0.231453
540540 18.0228 0.775577
541541 37.7787 1.62423 0.812117 0.583495i 0.198315π-0.198315\pi
0.812117 + 0.583495i 0.198315π0.198315\pi
542542 −13.8426 −0.594589
543543 −26.4009 −1.13297
544544 −48.1454 −2.06422
545545 4.38619 0.187884
546546 24.2001 1.03567
547547 −18.2088 −0.778550 −0.389275 0.921122i 0.627274π-0.627274\pi
−0.389275 + 0.921122i 0.627274π0.627274\pi
548548 −42.6487 −1.82186
549549 −5.04293 −0.215227
550550 16.6573 0.710270
551551 −20.8774 −0.889409
552552 6.66412 0.283644
553553 −16.7489 −0.712237
554554 −45.5250 −1.93417
555555 6.68699 0.283847
556556 7.08748 0.300576
557557 9.19760 0.389715 0.194857 0.980832i 0.437576π-0.437576\pi
0.194857 + 0.980832i 0.437576π0.437576\pi
558558 0 0
559559 −11.0293 −0.466488
560560 −13.6071 −0.575003
561561 −5.24377 −0.221392
562562 −5.12923 −0.216364
563563 −36.1618 −1.52404 −0.762019 0.647555i 0.775792π-0.775792\pi
−0.762019 + 0.647555i 0.775792π0.775792\pi
564564 49.9805 2.10456
565565 10.1429 0.426713
566566 41.1858 1.73117
567567 8.75517 0.367683
568568 −41.4382 −1.73871
569569 −41.4998 −1.73976 −0.869880 0.493263i 0.835804π-0.835804\pi
−0.869880 + 0.493263i 0.835804π0.835804\pi
570570 −5.96387 −0.249799
571571 32.3931 1.35561 0.677805 0.735242i 0.262931π-0.262931\pi
0.677805 + 0.735242i 0.262931π0.262931\pi
572572 −25.7087 −1.07494
573573 −1.70033 −0.0710322
574574 −0.483381 −0.0201759
575575 −2.49671 −0.104120
576576 −20.6816 −0.861735
577577 40.9825 1.70613 0.853063 0.521809i 0.174743π-0.174743\pi
0.853063 + 0.521809i 0.174743π0.174743\pi
578578 25.1982 1.04811
579579 −18.0611 −0.750593
580580 25.9055 1.07567
581581 −28.8123 −1.19533
582582 −4.88361 −0.202432
583583 −3.74302 −0.155020
584584 65.3629 2.70474
585585 2.20185 0.0910352
586586 −72.0791 −2.97756
587587 −25.5314 −1.05379 −0.526897 0.849929i 0.676644π-0.676644\pi
−0.526897 + 0.849929i 0.676644π0.676644\pi
588588 29.8612 1.23146
589589 0 0
590590 −0.763058 −0.0314146
591591 −4.21292 −0.173297
592592 −100.310 −4.12272
593593 44.5318 1.82870 0.914350 0.404925i 0.132702π-0.132702\pi
0.914350 + 0.404925i 0.132702π0.132702\pi
594594 −20.3518 −0.835045
595595 −2.90263 −0.118996
596596 −47.1526 −1.93145
597597 −18.7103 −0.765763
598598 5.32502 0.217756
599599 18.9800 0.775500 0.387750 0.921765i 0.373252π-0.373252\pi
0.387750 + 0.921765i 0.373252π0.373252\pi
600600 −57.2154 −2.33581
601601 12.8398 0.523747 0.261873 0.965102i 0.415660π-0.415660\pi
0.261873 + 0.965102i 0.415660π0.415660\pi
602602 13.9586 0.568909
603603 −8.18206 −0.333199
604604 16.8022 0.683673
605605 −5.60405 −0.227837
606606 31.0012 1.25934
607607 −38.1393 −1.54803 −0.774013 0.633170i 0.781754π-0.781754\pi
−0.774013 + 0.633170i 0.781754π0.781754\pi
608608 44.7448 1.81464
609609 19.9265 0.807463
610610 −8.37092 −0.338929
611611 24.6852 0.998654
612612 −14.2658 −0.576659
613613 18.5424 0.748920 0.374460 0.927243i 0.377828π-0.377828\pi
0.374460 + 0.927243i 0.377828π0.377828\pi
614614 −24.0803 −0.971801
615615 0.0898380 0.00362262
616616 20.1109 0.810293
617617 8.13555 0.327525 0.163762 0.986500i 0.447637π-0.447637\pi
0.163762 + 0.986500i 0.447637π0.447637\pi
618618 57.8488 2.32702
619619 5.36063 0.215462 0.107731 0.994180i 0.465641π-0.465641\pi
0.107731 + 0.994180i 0.465641π0.465641\pi
620620 0 0
621621 3.05046 0.122411
622622 −55.5669 −2.22803
623623 −26.4494 −1.05967
624624 67.4686 2.70091
625625 19.5850 0.783401
626626 1.21412 0.0485261
627627 4.87340 0.194625
628628 −17.4221 −0.695217
629629 −21.3980 −0.853193
630630 −2.78665 −0.111023
631631 −29.0470 −1.15634 −0.578172 0.815915i 0.696234π-0.696234\pi
−0.578172 + 0.815915i 0.696234π0.696234\pi
632632 −84.4572 −3.35953
633633 −26.0165 −1.03406
634634 15.0133 0.596256
635635 7.85389 0.311672
636636 20.8005 0.824793
637637 14.7483 0.584350
638638 −29.2532 −1.15814
639639 −4.69196 −0.185611
640640 −13.1265 −0.518870
641641 27.6055 1.09035 0.545177 0.838321i 0.316463π-0.316463\pi
0.545177 + 0.838321i 0.316463π0.316463\pi
642642 −47.2473 −1.86470
643643 4.22904 0.166777 0.0833885 0.996517i 0.473426π-0.473426\pi
0.0833885 + 0.996517i 0.473426π0.473426\pi
644644 −4.87683 −0.192174
645645 −2.59425 −0.102148
646646 19.0840 0.750852
647647 26.2809 1.03321 0.516604 0.856225i 0.327196π-0.327196\pi
0.516604 + 0.856225i 0.327196π0.327196\pi
648648 44.1483 1.73431
649649 0.623536 0.0244759
650650 −45.7184 −1.79322
651651 0 0
652652 9.11408 0.356935
653653 −13.3517 −0.522494 −0.261247 0.965272i 0.584134π-0.584134\pi
−0.261247 + 0.965272i 0.584134π0.584134\pi
654654 27.5245 1.07629
655655 −1.48311 −0.0579498
656656 −1.34764 −0.0526166
657657 7.40090 0.288737
658658 −31.2414 −1.21792
659659 −15.4158 −0.600515 −0.300258 0.953858i 0.597073π-0.597073\pi
−0.300258 + 0.953858i 0.597073π0.597073\pi
660660 −6.04709 −0.235383
661661 −4.72306 −0.183706 −0.0918530 0.995773i 0.529279π-0.529279\pi
−0.0918530 + 0.995773i 0.529279π0.529279\pi
662662 65.1164 2.53082
663663 14.3923 0.558950
664664 −145.287 −5.63823
665665 2.69762 0.104609
666666 −20.5429 −0.796023
667667 4.38466 0.169775
668668 73.4034 2.84006
669669 13.3345 0.515541
670670 −13.5817 −0.524705
671671 6.84033 0.264068
672672 −42.7068 −1.64745
673673 31.0730 1.19778 0.598888 0.800833i 0.295609π-0.295609\pi
0.598888 + 0.800833i 0.295609π0.295609\pi
674674 29.6885 1.14356
675675 −26.1900 −1.00805
676676 2.48116 0.0954294
677677 9.03995 0.347434 0.173717 0.984796i 0.444422π-0.444422\pi
0.173717 + 0.984796i 0.444422π0.444422\pi
678678 63.6491 2.44443
679679 2.20898 0.0847730
680680 −14.6367 −0.561290
681681 −12.0053 −0.460044
682682 0 0
683683 7.13535 0.273027 0.136513 0.990638i 0.456410π-0.456410\pi
0.136513 + 0.990638i 0.456410π0.456410\pi
684684 13.2581 0.506938
685685 −4.95457 −0.189304
686686 −51.1844 −1.95423
687687 32.4186 1.23685
688688 38.9158 1.48365
689689 10.2733 0.391380
690690 1.25252 0.0476828
691691 36.4754 1.38759 0.693795 0.720172i 0.255937π-0.255937\pi
0.693795 + 0.720172i 0.255937π0.255937\pi
692692 −0.0627431 −0.00238514
693693 2.27712 0.0865006
694694 −49.9491 −1.89604
695695 0.823364 0.0312320
696696 100.480 3.80870
697697 −0.287476 −0.0108889
698698 86.5547 3.27615
699699 −23.0664 −0.872450
700700 41.8705 1.58256
701701 −1.61444 −0.0609766 −0.0304883 0.999535i 0.509706π-0.509706\pi
−0.0304883 + 0.999535i 0.509706π0.509706\pi
702702 55.8585 2.10824
703703 19.8866 0.750037
704704 28.0530 1.05729
705705 5.80632 0.218679
706706 86.6590 3.26145
707707 −14.0227 −0.527377
708708 −3.46507 −0.130225
709709 −11.4880 −0.431439 −0.215720 0.976455i 0.569210π-0.569210\pi
−0.215720 + 0.976455i 0.569210π0.569210\pi
710710 −7.78833 −0.292291
711711 −9.56291 −0.358637
712712 −133.372 −4.99833
713713 0 0
714714 −18.2148 −0.681672
715715 −2.98663 −0.111694
716716 52.2542 1.95283
717717 25.9324 0.968462
718718 −56.9298 −2.12460
719719 14.1710 0.528489 0.264244 0.964456i 0.414877π-0.414877\pi
0.264244 + 0.964456i 0.414877π0.414877\pi
720720 −7.76904 −0.289535
721721 −26.1666 −0.974493
722722 33.3768 1.24216
723723 −25.7884 −0.959081
724724 97.4236 3.62072
725725 −37.6449 −1.39809
726726 −35.1670 −1.30517
727727 −26.9477 −0.999436 −0.499718 0.866188i 0.666563π-0.666563\pi
−0.499718 + 0.866188i 0.666563π0.666563\pi
728728 −55.1974 −2.04575
729729 29.0824 1.07713
730730 12.2850 0.454688
731731 8.30145 0.307040
732732 −38.0127 −1.40499
733733 −28.4235 −1.04985 −0.524924 0.851149i 0.675906π-0.675906\pi
−0.524924 + 0.851149i 0.675906π0.675906\pi
734734 34.9624 1.29049
735735 3.46903 0.127957
736736 −9.39725 −0.346387
737737 11.0983 0.408811
738738 −0.275989 −0.0101593
739739 0.697306 0.0256508 0.0128254 0.999918i 0.495917π-0.495917\pi
0.0128254 + 0.999918i 0.495917π0.495917\pi
740740 −24.6760 −0.907108
741741 −13.3757 −0.491370
742742 −13.0018 −0.477310
743743 18.1815 0.667015 0.333508 0.942747i 0.391768π-0.391768\pi
0.333508 + 0.942747i 0.391768π0.391768\pi
744744 0 0
745745 −5.47779 −0.200691
746746 11.9064 0.435925
747747 −16.4506 −0.601894
748748 19.3503 0.707519
749749 21.3712 0.780886
750750 −22.3670 −0.816728
751751 −37.0660 −1.35256 −0.676279 0.736646i 0.736408π-0.736408\pi
−0.676279 + 0.736646i 0.736408π0.736408\pi
752752 −87.0995 −3.17619
753753 −32.5417 −1.18589
754754 80.2895 2.92397
755755 1.95194 0.0710385
756756 −51.1571 −1.86057
757757 −6.40201 −0.232685 −0.116342 0.993209i 0.537117π-0.537117\pi
−0.116342 + 0.993209i 0.537117π0.537117\pi
758758 40.2333 1.46134
759759 −1.02351 −0.0371509
760760 13.6028 0.493427
761761 21.3388 0.773532 0.386766 0.922178i 0.373592π-0.373592\pi
0.386766 + 0.922178i 0.373592π0.373592\pi
762762 49.2853 1.78542
763763 −12.4501 −0.450723
764764 6.27447 0.227002
765765 −1.65728 −0.0599190
766766 −31.3412 −1.13241
767767 −1.71138 −0.0617945
768768 −22.8358 −0.824017
769769 −12.2566 −0.441983 −0.220991 0.975276i 0.570929π-0.570929\pi
−0.220991 + 0.975276i 0.570929π0.570929\pi
770770 3.77986 0.136217
771771 −0.150705 −0.00542752
772772 66.6482 2.39872
773773 34.7035 1.24820 0.624098 0.781346i 0.285466π-0.285466\pi
0.624098 + 0.781346i 0.285466π0.285466\pi
774774 7.96974 0.286466
775775 0 0
776776 11.1389 0.399863
777777 −18.9808 −0.680933
778778 38.7434 1.38902
779779 0.267172 0.00957242
780780 16.5971 0.594272
781781 6.36426 0.227731
782782 −4.00801 −0.143326
783783 45.9943 1.64370
784784 −52.0382 −1.85851
785785 −2.02395 −0.0722380
786786 −9.30691 −0.331966
787787 20.1182 0.717136 0.358568 0.933504i 0.383265π-0.383265\pi
0.358568 + 0.933504i 0.383265π0.383265\pi
788788 15.5463 0.553816
789789 −10.3561 −0.368686
790790 −15.8738 −0.564763
791791 −28.7902 −1.02366
792792 11.4825 0.408012
793793 −18.7743 −0.666694
794794 −42.4779 −1.50748
795795 2.41643 0.0857018
796796 69.0441 2.44720
797797 −26.2019 −0.928121 −0.464060 0.885804i 0.653608π-0.653608\pi
−0.464060 + 0.885804i 0.653608π0.653608\pi
798798 16.9283 0.599254
799799 −18.5799 −0.657310
800800 80.6809 2.85250
801801 −15.1014 −0.533583
802802 83.4573 2.94698
803803 −10.0387 −0.354259
804804 −61.6748 −2.17510
805805 −0.566550 −0.0199683
806806 0 0
807807 23.0179 0.810270
808808 −70.7099 −2.48757
809809 −36.4501 −1.28152 −0.640759 0.767742i 0.721380π-0.721380\pi
−0.640759 + 0.767742i 0.721380π0.721380\pi
810810 8.29770 0.291551
811811 −19.1064 −0.670918 −0.335459 0.942055i 0.608891π-0.608891\pi
−0.335459 + 0.942055i 0.608891π0.608891\pi
812812 −73.5320 −2.58047
813813 −7.30251 −0.256110
814814 27.8648 0.976662
815815 1.05880 0.0370881
816816 −50.7820 −1.77773
817817 −7.71511 −0.269917
818818 17.7169 0.619456
819819 −6.24988 −0.218388
820820 −0.331516 −0.0115770
821821 −39.4598 −1.37716 −0.688578 0.725162i 0.741765π-0.741765\pi
−0.688578 + 0.725162i 0.741765π0.741765\pi
822822 −31.0913 −1.08443
823823 31.5880 1.10109 0.550544 0.834806i 0.314420π-0.314420\pi
0.550544 + 0.834806i 0.314420π0.314420\pi
824824 −131.946 −4.59656
825825 8.78740 0.305938
826826 2.16592 0.0753619
827827 −19.8298 −0.689551 −0.344776 0.938685i 0.612045π-0.612045\pi
−0.344776 + 0.938685i 0.612045π0.612045\pi
828828 −2.78446 −0.0967667
829829 −8.99987 −0.312578 −0.156289 0.987711i 0.549953π-0.549953\pi
−0.156289 + 0.987711i 0.549953π0.549953\pi
830830 −27.3068 −0.947832
831831 −24.0163 −0.833115
832832 −76.9954 −2.66933
833833 −11.1007 −0.384617
834834 5.16683 0.178913
835835 8.52740 0.295103
836836 −17.9836 −0.621976
837837 0 0
838838 39.4699 1.36347
839839 −31.8452 −1.09942 −0.549709 0.835356i 0.685261π-0.685261\pi
−0.549709 + 0.835356i 0.685261π0.685261\pi
840840 −12.9833 −0.447965
841841 37.1110 1.27969
842842 71.8698 2.47680
843843 −2.70587 −0.0931953
844844 96.0050 3.30463
845845 0.288241 0.00991579
846846 −17.8375 −0.613265
847847 15.9069 0.546569
848848 −36.2483 −1.24477
849849 21.7271 0.745673
850850 34.4111 1.18029
851851 −4.17656 −0.143171
852852 −35.3671 −1.21166
853853 −49.0917 −1.68087 −0.840434 0.541914i 0.817700π-0.817700\pi
−0.840434 + 0.541914i 0.817700π0.817700\pi
854854 23.7606 0.813071
855855 1.54022 0.0526744
856856 107.765 3.68334
857857 19.2405 0.657242 0.328621 0.944462i 0.393416π-0.393416\pi
0.328621 + 0.944462i 0.393416π0.393416\pi
858858 −18.7419 −0.639838
859859 −4.64215 −0.158388 −0.0791940 0.996859i 0.525235π-0.525235\pi
−0.0791940 + 0.996859i 0.525235π0.525235\pi
860860 9.57319 0.326443
861861 −0.255002 −0.00869046
862862 −10.7284 −0.365410
863863 38.5304 1.31159 0.655795 0.754939i 0.272333π-0.272333\pi
0.655795 + 0.754939i 0.272333π0.272333\pi
864864 −98.5755 −3.35361
865865 −0.00728897 −0.000247833 0
866866 48.6287 1.65247
867867 13.2931 0.451456
868868 0 0
869869 12.9713 0.440022
870870 18.8853 0.640273
871871 −30.4609 −1.03213
872872 −62.7800 −2.12600
873873 1.26123 0.0426863
874874 3.72492 0.125997
875875 10.1172 0.342023
876876 55.7866 1.88485
877877 −9.25834 −0.312632 −0.156316 0.987707i 0.549962π-0.549962\pi
−0.156316 + 0.987707i 0.549962π0.549962\pi
878878 −61.6277 −2.07983
879879 −38.0246 −1.28254
880880 10.5381 0.355238
881881 17.8791 0.602361 0.301181 0.953567i 0.402619π-0.402619\pi
0.301181 + 0.953567i 0.402619π0.402619\pi
882882 −10.6571 −0.358844
883883 48.3156 1.62595 0.812975 0.582299i 0.197847π-0.197847\pi
0.812975 + 0.582299i 0.197847π0.197847\pi
884884 −53.1098 −1.78628
885885 −0.402544 −0.0135314
886886 57.8150 1.94233
887887 23.5122 0.789463 0.394732 0.918797i 0.370838π-0.370838\pi
0.394732 + 0.918797i 0.370838π0.370838\pi
888888 −95.7116 −3.21187
889889 −22.2930 −0.747684
890890 −25.0673 −0.840259
891891 −6.78050 −0.227155
892892 −49.2063 −1.64755
893893 17.2676 0.577838
894894 −34.3746 −1.14966
895895 6.07046 0.202913
896896 37.2591 1.24474
897897 2.80916 0.0937951
898898 50.5739 1.68767
899899 0 0
900900 23.9062 0.796874
901901 −7.73243 −0.257605
902902 0.374357 0.0124647
903903 7.36370 0.245049
904904 −145.176 −4.82847
905905 11.3179 0.376219
906906 12.2490 0.406945
907907 −12.5821 −0.417783 −0.208892 0.977939i 0.566986π-0.566986\pi
−0.208892 + 0.977939i 0.566986π0.566986\pi
908908 44.3015 1.47020
909909 −8.00634 −0.265553
910910 −10.3744 −0.343907
911911 47.2845 1.56660 0.783302 0.621641i 0.213534π-0.213534\pi
0.783302 + 0.621641i 0.213534π0.213534\pi
912912 47.1952 1.56279
913913 22.3138 0.738480
914914 11.0458 0.365361
915915 −4.41599 −0.145988
916916 −119.630 −3.95267
917917 4.20976 0.139018
918918 −42.0433 −1.38764
919919 −23.1319 −0.763050 −0.381525 0.924359i 0.624601π-0.624601\pi
−0.381525 + 0.924359i 0.624601π0.624601\pi
920920 −2.85685 −0.0941877
921921 −12.7033 −0.418588
922922 −61.5374 −2.02663
923923 −17.4676 −0.574954
924924 17.1645 0.564670
925925 35.8582 1.17901
926926 −44.5677 −1.46459
927927 −14.9400 −0.490693
928928 −141.690 −4.65120
929929 −1.68694 −0.0553468 −0.0276734 0.999617i 0.508810π-0.508810\pi
−0.0276734 + 0.999617i 0.508810π0.508810\pi
930930 0 0
931931 10.3166 0.338114
932932 85.1184 2.78815
933933 −29.3137 −0.959689
934934 −102.619 −3.35781
935935 2.24796 0.0735162
936936 −31.5153 −1.03011
937937 19.7267 0.644442 0.322221 0.946665i 0.395571π-0.395571\pi
0.322221 + 0.946665i 0.395571π0.395571\pi
938938 38.5511 1.25874
939939 0.640498 0.0209019
940940 −21.4262 −0.698847
941941 8.82326 0.287630 0.143815 0.989605i 0.454063π-0.454063\pi
0.143815 + 0.989605i 0.454063π0.454063\pi
942942 −12.7009 −0.413816
943943 −0.0561111 −0.00182723
944944 6.03847 0.196536
945945 −5.94301 −0.193326
946946 −10.8103 −0.351473
947947 −15.5612 −0.505670 −0.252835 0.967509i 0.581363π-0.581363\pi
−0.252835 + 0.967509i 0.581363π0.581363\pi
948948 −72.0834 −2.34116
949949 27.5527 0.894399
950950 −31.9806 −1.03759
951951 7.92013 0.256828
952952 41.5457 1.34650
953953 −9.65172 −0.312650 −0.156325 0.987706i 0.549965π-0.549965\pi
−0.156325 + 0.987706i 0.549965π0.549965\pi
954954 −7.42345 −0.240343
955955 0.728916 0.0235872
956956 −95.6945 −3.09498
957957 −15.4322 −0.498853
958958 90.6172 2.92771
959959 14.0634 0.454131
960960 −18.1105 −0.584514
961961 0 0
962962 −76.4790 −2.46578
963963 12.2020 0.393205
964964 95.1632 3.06500
965965 7.74263 0.249244
966966 −3.55525 −0.114388
967967 −28.3976 −0.913204 −0.456602 0.889671i 0.650934π-0.650934\pi
−0.456602 + 0.889671i 0.650934π0.650934\pi
968968 80.2114 2.57809
969969 10.0676 0.323418
970970 2.09356 0.0672202
971971 −22.1271 −0.710092 −0.355046 0.934849i 0.615535π-0.615535\pi
−0.355046 + 0.934849i 0.615535π0.615535\pi
972972 −51.1920 −1.64198
973973 −2.33709 −0.0749238
974974 −55.6235 −1.78229
975975 −24.1183 −0.772403
976976 66.2434 2.12040
977977 −19.9123 −0.637051 −0.318525 0.947914i 0.603188π-0.603188\pi
−0.318525 + 0.947914i 0.603188π0.603188\pi
978978 6.64424 0.212460
979979 20.4839 0.654667
980980 −12.8013 −0.408921
981981 −7.10845 −0.226955
982982 66.5349 2.12322
983983 24.9304 0.795156 0.397578 0.917568i 0.369851π-0.369851\pi
0.397578 + 0.917568i 0.369851π0.369851\pi
984984 −1.28586 −0.0409918
985985 1.80605 0.0575454
986986 −60.4320 −1.92455
987987 −16.4811 −0.524598
988988 49.3586 1.57031
989989 1.62032 0.0515231
990990 2.15814 0.0685901
991991 42.0512 1.33580 0.667900 0.744251i 0.267193π-0.267193\pi
0.667900 + 0.744251i 0.267193π0.267193\pi
992992 0 0
993993 34.3515 1.09011
994994 22.1069 0.701189
995995 8.02096 0.254282
996996 −124.001 −3.92912
997997 14.4647 0.458100 0.229050 0.973415i 0.426438π-0.426438\pi
0.229050 + 0.973415i 0.426438π0.426438\pi
998998 −66.0707 −2.09143
999999 −43.8114 −1.38613
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.j.1.1 8
3.2 odd 2 8649.2.a.be.1.8 8
31.2 even 5 961.2.d.n.531.1 16
31.3 odd 30 961.2.g.k.846.1 16
31.4 even 5 961.2.d.q.388.4 16
31.5 even 3 961.2.c.i.521.1 16
31.6 odd 6 961.2.c.j.439.1 16
31.7 even 15 961.2.g.m.235.2 16
31.8 even 5 961.2.d.q.374.4 16
31.9 even 15 961.2.g.m.732.2 16
31.10 even 15 961.2.g.j.844.1 16
31.11 odd 30 961.2.g.t.338.2 16
31.12 odd 30 31.2.g.a.20.1 yes 16
31.13 odd 30 31.2.g.a.14.1 16
31.14 even 15 961.2.g.n.816.2 16
31.15 odd 10 961.2.d.o.628.1 16
31.16 even 5 961.2.d.n.628.1 16
31.17 odd 30 961.2.g.t.816.2 16
31.18 even 15 961.2.g.l.448.1 16
31.19 even 15 961.2.g.l.547.1 16
31.20 even 15 961.2.g.n.338.2 16
31.21 odd 30 961.2.g.k.844.1 16
31.22 odd 30 961.2.g.s.732.2 16
31.23 odd 10 961.2.d.p.374.4 16
31.24 odd 30 961.2.g.s.235.2 16
31.25 even 3 961.2.c.i.439.1 16
31.26 odd 6 961.2.c.j.521.1 16
31.27 odd 10 961.2.d.p.388.4 16
31.28 even 15 961.2.g.j.846.1 16
31.29 odd 10 961.2.d.o.531.1 16
31.30 odd 2 961.2.a.i.1.1 8
93.44 even 30 279.2.y.c.262.2 16
93.74 even 30 279.2.y.c.82.2 16
93.92 even 2 8649.2.a.bf.1.8 8
124.43 even 30 496.2.bg.c.113.1 16
124.75 even 30 496.2.bg.c.417.1 16
155.12 even 60 775.2.ck.a.299.4 32
155.13 even 60 775.2.ck.a.324.4 32
155.43 even 60 775.2.ck.a.299.1 32
155.44 odd 30 775.2.bl.a.76.2 16
155.74 odd 30 775.2.bl.a.51.2 16
155.137 even 60 775.2.ck.a.324.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.13 odd 30
31.2.g.a.20.1 yes 16 31.12 odd 30
279.2.y.c.82.2 16 93.74 even 30
279.2.y.c.262.2 16 93.44 even 30
496.2.bg.c.113.1 16 124.43 even 30
496.2.bg.c.417.1 16 124.75 even 30
775.2.bl.a.51.2 16 155.74 odd 30
775.2.bl.a.76.2 16 155.44 odd 30
775.2.ck.a.299.1 32 155.43 even 60
775.2.ck.a.299.4 32 155.12 even 60
775.2.ck.a.324.1 32 155.137 even 60
775.2.ck.a.324.4 32 155.13 even 60
961.2.a.i.1.1 8 31.30 odd 2
961.2.a.j.1.1 8 1.1 even 1 trivial
961.2.c.i.439.1 16 31.25 even 3
961.2.c.i.521.1 16 31.5 even 3
961.2.c.j.439.1 16 31.6 odd 6
961.2.c.j.521.1 16 31.26 odd 6
961.2.d.n.531.1 16 31.2 even 5
961.2.d.n.628.1 16 31.16 even 5
961.2.d.o.531.1 16 31.29 odd 10
961.2.d.o.628.1 16 31.15 odd 10
961.2.d.p.374.4 16 31.23 odd 10
961.2.d.p.388.4 16 31.27 odd 10
961.2.d.q.374.4 16 31.8 even 5
961.2.d.q.388.4 16 31.4 even 5
961.2.g.j.844.1 16 31.10 even 15
961.2.g.j.846.1 16 31.28 even 15
961.2.g.k.844.1 16 31.21 odd 30
961.2.g.k.846.1 16 31.3 odd 30
961.2.g.l.448.1 16 31.18 even 15
961.2.g.l.547.1 16 31.19 even 15
961.2.g.m.235.2 16 31.7 even 15
961.2.g.m.732.2 16 31.9 even 15
961.2.g.n.338.2 16 31.20 even 15
961.2.g.n.816.2 16 31.14 even 15
961.2.g.s.235.2 16 31.24 odd 30
961.2.g.s.732.2 16 31.22 odd 30
961.2.g.t.338.2 16 31.11 odd 30
961.2.g.t.816.2 16 31.17 odd 30
8649.2.a.be.1.8 8 3.2 odd 2
8649.2.a.bf.1.8 8 93.92 even 2