Properties

Label 279.2.y.c.262.2
Level $279$
Weight $2$
Character 279.262
Analytic conductor $2.228$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [279,2,Mod(10,279)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(279, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("279.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 279.y (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.22782621639\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 262.2
Root \(1.14660i\) of defining polynomial
Character \(\chi\) \(=\) 279.262
Dual form 279.2.y.c.82.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.831304 - 2.55849i) q^{2} +(-4.23677 - 3.07819i) q^{4} +(0.304192 - 0.526876i) q^{5} +(0.180508 - 1.71742i) q^{7} +(-7.04481 + 5.11835i) q^{8} +(-1.09513 - 1.21627i) q^{10} +(1.22177 - 0.543967i) q^{11} +(-3.59045 - 0.763174i) q^{13} +(-4.24394 - 1.88952i) q^{14} +(4.00227 + 12.3177i) q^{16} +(2.52396 + 1.12374i) q^{17} +(2.51157 - 0.533850i) q^{19} +(-2.91062 + 1.29589i) q^{20} +(-0.376072 - 3.57808i) q^{22} +(-0.436271 + 0.316969i) q^{23} +(2.31493 + 4.00958i) q^{25} +(-4.93733 + 8.55171i) q^{26} +(-6.05132 + 6.72067i) q^{28} +(2.51258 - 7.73291i) q^{29} +(4.75081 - 2.90341i) q^{31} +17.4262 q^{32} +(4.97326 - 5.52336i) q^{34} +(-0.849957 - 0.617530i) q^{35} +(-3.87249 - 6.70735i) q^{37} +(0.722025 - 6.86961i) q^{38} +(0.553763 + 5.26870i) q^{40} +(0.0696243 + 0.0773256i) q^{41} +(2.93904 - 0.624713i) q^{43} +(-6.85079 - 1.45618i) q^{44} +(0.448289 + 1.37969i) q^{46} +(2.07813 + 6.39584i) q^{47} +(3.93009 + 0.835366i) q^{49} +(12.1829 - 2.58955i) q^{50} +(12.8627 + 14.2855i) q^{52} +(0.292549 + 2.78341i) q^{53} +(0.0850494 - 0.809191i) q^{55} +(7.51871 + 13.0228i) q^{56} +(-17.6959 - 12.8568i) q^{58} +(-0.311970 + 0.346478i) q^{59} -5.11468 q^{61} +(-3.47898 - 14.5685i) q^{62} +(6.48190 - 19.9492i) q^{64} +(-1.49428 + 1.65957i) q^{65} +(-4.14923 + 7.18668i) q^{67} +(-7.23436 - 12.5303i) q^{68} +(-2.28652 + 1.66125i) q^{70} +(0.497420 + 4.73264i) q^{71} +(6.85725 - 3.05304i) q^{73} +(-20.3799 + 4.33188i) q^{74} +(-12.2842 - 5.46929i) q^{76} +(-0.713679 - 2.19648i) q^{77} +(-8.86044 - 3.94492i) q^{79} +(7.70738 + 1.63825i) q^{80} +(0.255716 - 0.113852i) q^{82} +(11.1642 + 12.3991i) q^{83} +(1.35984 - 0.987981i) q^{85} +(0.844916 - 8.03884i) q^{86} +(-5.82292 + 10.0856i) q^{88} +(-12.3911 - 9.00268i) q^{89} +(-1.95880 + 6.02855i) q^{91} +2.82407 q^{92} +18.0912 q^{94} +(0.482726 - 1.48568i) q^{95} +(1.03488 + 0.751881i) q^{97} +(5.40437 - 9.36065i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{2} - 14 q^{4} + 3 q^{5} + 2 q^{7} - 17 q^{8} - 2 q^{10} + 7 q^{11} - 7 q^{13} + 6 q^{14} - 2 q^{16} + 6 q^{17} + 16 q^{19} - 37 q^{20} + 9 q^{22} - q^{23} - 13 q^{25} - 9 q^{26} - 30 q^{28}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.831304 2.55849i 0.587821 1.80913i 0.000184800 1.00000i \(-0.499941\pi\)
0.587636 0.809126i \(-0.300059\pi\)
\(3\) 0 0
\(4\) −4.23677 3.07819i −2.11839 1.53910i
\(5\) 0.304192 0.526876i 0.136039 0.235626i −0.789955 0.613165i \(-0.789896\pi\)
0.925994 + 0.377539i \(0.123230\pi\)
\(6\) 0 0
\(7\) 0.180508 1.71742i 0.0682256 0.649123i −0.905958 0.423367i \(-0.860848\pi\)
0.974184 0.225756i \(-0.0724853\pi\)
\(8\) −7.04481 + 5.11835i −2.49072 + 1.80961i
\(9\) 0 0
\(10\) −1.09513 1.21627i −0.346311 0.384617i
\(11\) 1.22177 0.543967i 0.368377 0.164012i −0.214195 0.976791i \(-0.568713\pi\)
0.582572 + 0.812779i \(0.302046\pi\)
\(12\) 0 0
\(13\) −3.59045 0.763174i −0.995812 0.211666i −0.318946 0.947773i \(-0.603329\pi\)
−0.676866 + 0.736106i \(0.736662\pi\)
\(14\) −4.24394 1.88952i −1.13424 0.504997i
\(15\) 0 0
\(16\) 4.00227 + 12.3177i 1.00057 + 3.07943i
\(17\) 2.52396 + 1.12374i 0.612150 + 0.272547i 0.689304 0.724472i \(-0.257916\pi\)
−0.0771534 + 0.997019i \(0.524583\pi\)
\(18\) 0 0
\(19\) 2.51157 0.533850i 0.576193 0.122474i 0.0894075 0.995995i \(-0.471503\pi\)
0.486786 + 0.873522i \(0.338169\pi\)
\(20\) −2.91062 + 1.29589i −0.650834 + 0.289770i
\(21\) 0 0
\(22\) −0.376072 3.57808i −0.0801788 0.762850i
\(23\) −0.436271 + 0.316969i −0.0909688 + 0.0660927i −0.632340 0.774691i \(-0.717905\pi\)
0.541371 + 0.840784i \(0.317905\pi\)
\(24\) 0 0
\(25\) 2.31493 + 4.00958i 0.462987 + 0.801917i
\(26\) −4.93733 + 8.55171i −0.968290 + 1.67713i
\(27\) 0 0
\(28\) −6.05132 + 6.72067i −1.14359 + 1.27009i
\(29\) 2.51258 7.73291i 0.466574 1.43597i −0.390419 0.920637i \(-0.627670\pi\)
0.856993 0.515329i \(-0.172330\pi\)
\(30\) 0 0
\(31\) 4.75081 2.90341i 0.853271 0.521468i
\(32\) 17.4262 3.08054
\(33\) 0 0
\(34\) 4.97326 5.52336i 0.852906 0.947248i
\(35\) −0.849957 0.617530i −0.143669 0.104382i
\(36\) 0 0
\(37\) −3.87249 6.70735i −0.636633 1.10268i −0.986167 0.165757i \(-0.946993\pi\)
0.349533 0.936924i \(-0.386340\pi\)
\(38\) 0.722025 6.86961i 0.117128 1.11440i
\(39\) 0 0
\(40\) 0.553763 + 5.26870i 0.0875576 + 0.833055i
\(41\) 0.0696243 + 0.0773256i 0.0108735 + 0.0120762i 0.748557 0.663070i \(-0.230747\pi\)
−0.737684 + 0.675147i \(0.764080\pi\)
\(42\) 0 0
\(43\) 2.93904 0.624713i 0.448200 0.0952678i 0.0217184 0.999764i \(-0.493086\pi\)
0.426481 + 0.904496i \(0.359753\pi\)
\(44\) −6.85079 1.45618i −1.03280 0.219527i
\(45\) 0 0
\(46\) 0.448289 + 1.37969i 0.0660967 + 0.203425i
\(47\) 2.07813 + 6.39584i 0.303127 + 0.932929i 0.980370 + 0.197169i \(0.0631747\pi\)
−0.677243 + 0.735760i \(0.736825\pi\)
\(48\) 0 0
\(49\) 3.93009 + 0.835366i 0.561441 + 0.119338i
\(50\) 12.1829 2.58955i 1.72292 0.366218i
\(51\) 0 0
\(52\) 12.8627 + 14.2855i 1.78374 + 1.98104i
\(53\) 0.292549 + 2.78341i 0.0401846 + 0.382331i 0.996068 + 0.0885864i \(0.0282349\pi\)
−0.955884 + 0.293745i \(0.905098\pi\)
\(54\) 0 0
\(55\) 0.0850494 0.809191i 0.0114681 0.109111i
\(56\) 7.51871 + 13.0228i 1.00473 + 1.74024i
\(57\) 0 0
\(58\) −17.6959 12.8568i −2.32358 1.68818i
\(59\) −0.311970 + 0.346478i −0.0406151 + 0.0451076i −0.763110 0.646269i \(-0.776329\pi\)
0.722495 + 0.691376i \(0.242995\pi\)
\(60\) 0 0
\(61\) −5.11468 −0.654867 −0.327434 0.944874i \(-0.606184\pi\)
−0.327434 + 0.944874i \(0.606184\pi\)
\(62\) −3.47898 14.5685i −0.441831 1.85020i
\(63\) 0 0
\(64\) 6.48190 19.9492i 0.810238 2.49365i
\(65\) −1.49428 + 1.65957i −0.185343 + 0.205844i
\(66\) 0 0
\(67\) −4.14923 + 7.18668i −0.506910 + 0.877993i 0.493058 + 0.869996i \(0.335879\pi\)
−0.999968 + 0.00799701i \(0.997454\pi\)
\(68\) −7.23436 12.5303i −0.877294 1.51952i
\(69\) 0 0
\(70\) −2.28652 + 1.66125i −0.273291 + 0.198558i
\(71\) 0.497420 + 4.73264i 0.0590329 + 0.561661i 0.983565 + 0.180556i \(0.0577897\pi\)
−0.924532 + 0.381105i \(0.875544\pi\)
\(72\) 0 0
\(73\) 6.85725 3.05304i 0.802580 0.357332i 0.0358953 0.999356i \(-0.488572\pi\)
0.766685 + 0.642024i \(0.221905\pi\)
\(74\) −20.3799 + 4.33188i −2.36911 + 0.503571i
\(75\) 0 0
\(76\) −12.2842 5.46929i −1.40910 0.627371i
\(77\) −0.713679 2.19648i −0.0813313 0.250312i
\(78\) 0 0
\(79\) −8.86044 3.94492i −0.996877 0.443838i −0.157577 0.987507i \(-0.550368\pi\)
−0.839300 + 0.543668i \(0.817035\pi\)
\(80\) 7.70738 + 1.63825i 0.861711 + 0.183162i
\(81\) 0 0
\(82\) 0.255716 0.113852i 0.0282391 0.0125728i
\(83\) 11.1642 + 12.3991i 1.22543 + 1.36097i 0.911380 + 0.411567i \(0.135018\pi\)
0.314047 + 0.949407i \(0.398315\pi\)
\(84\) 0 0
\(85\) 1.35984 0.987981i 0.147495 0.107162i
\(86\) 0.844916 8.03884i 0.0911096 0.866850i
\(87\) 0 0
\(88\) −5.82292 + 10.0856i −0.620725 + 1.07513i
\(89\) −12.3911 9.00268i −1.31346 0.954282i −0.999989 0.00468333i \(-0.998509\pi\)
−0.313468 0.949599i \(-0.601491\pi\)
\(90\) 0 0
\(91\) −1.95880 + 6.02855i −0.205338 + 0.631964i
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) 0.482726 1.48568i 0.0495266 0.152427i
\(96\) 0 0
\(97\) 1.03488 + 0.751881i 0.105076 + 0.0763420i 0.639082 0.769138i \(-0.279314\pi\)
−0.534007 + 0.845480i \(0.679314\pi\)
\(98\) 5.40437 9.36065i 0.545924 0.945568i
\(99\) 0 0
\(100\) 2.53443 24.1135i 0.253443 2.41135i
\(101\) 6.56941 4.77296i 0.653681 0.474927i −0.210842 0.977520i \(-0.567621\pi\)
0.864523 + 0.502593i \(0.167621\pi\)
\(102\) 0 0
\(103\) 10.1390 + 11.2605i 0.999026 + 1.10953i 0.993982 + 0.109544i \(0.0349389\pi\)
0.00504416 + 0.999987i \(0.498394\pi\)
\(104\) 29.2002 13.0008i 2.86332 1.27483i
\(105\) 0 0
\(106\) 7.36453 + 1.56538i 0.715307 + 0.152043i
\(107\) 11.3057 + 5.03362i 1.09296 + 0.486618i 0.872419 0.488759i \(-0.162550\pi\)
0.220543 + 0.975377i \(0.429217\pi\)
\(108\) 0 0
\(109\) 2.22788 + 6.85672i 0.213392 + 0.656755i 0.999264 + 0.0383645i \(0.0122148\pi\)
−0.785871 + 0.618390i \(0.787785\pi\)
\(110\) −1.99960 0.890281i −0.190655 0.0848850i
\(111\) 0 0
\(112\) 21.8772 4.65013i 2.06720 0.439396i
\(113\) −15.2304 + 6.78103i −1.43276 + 0.637906i −0.968776 0.247938i \(-0.920247\pi\)
−0.463984 + 0.885844i \(0.653580\pi\)
\(114\) 0 0
\(115\) 0.0342934 + 0.326280i 0.00319788 + 0.0304258i
\(116\) −34.4486 + 25.0284i −3.19847 + 2.32383i
\(117\) 0 0
\(118\) 0.627119 + 1.08620i 0.0577310 + 0.0999930i
\(119\) 2.38553 4.13185i 0.218681 0.378767i
\(120\) 0 0
\(121\) −6.16362 + 6.84539i −0.560329 + 0.622308i
\(122\) −4.25185 + 13.0859i −0.384944 + 1.18474i
\(123\) 0 0
\(124\) −29.0654 2.32284i −2.61015 0.208597i
\(125\) 5.85866 0.524014
\(126\) 0 0
\(127\) −8.63810 + 9.59358i −0.766507 + 0.851293i −0.992425 0.122854i \(-0.960795\pi\)
0.225918 + 0.974146i \(0.427462\pi\)
\(128\) −17.4553 12.6820i −1.54285 1.12095i
\(129\) 0 0
\(130\) 3.00379 + 5.20272i 0.263450 + 0.456309i
\(131\) −0.254818 + 2.42443i −0.0222635 + 0.211823i 0.977735 + 0.209846i \(0.0672962\pi\)
−0.999998 + 0.00197767i \(0.999370\pi\)
\(132\) 0 0
\(133\) −0.463486 4.40978i −0.0401894 0.382376i
\(134\) 14.9378 + 16.5901i 1.29043 + 1.43317i
\(135\) 0 0
\(136\) −23.5325 + 5.00199i −2.01790 + 0.428917i
\(137\) 7.96586 + 1.69320i 0.680570 + 0.144660i 0.535210 0.844719i \(-0.320233\pi\)
0.145360 + 0.989379i \(0.453566\pi\)
\(138\) 0 0
\(139\) −0.418212 1.28712i −0.0354723 0.109172i 0.931753 0.363094i \(-0.118280\pi\)
−0.967225 + 0.253921i \(0.918280\pi\)
\(140\) 1.70020 + 5.23267i 0.143693 + 0.442241i
\(141\) 0 0
\(142\) 12.5219 + 2.66162i 1.05082 + 0.223358i
\(143\) −4.80184 + 1.02066i −0.401550 + 0.0853522i
\(144\) 0 0
\(145\) −3.30998 3.67611i −0.274879 0.305284i
\(146\) −2.11072 20.0822i −0.174685 1.66201i
\(147\) 0 0
\(148\) −4.23967 + 40.3378i −0.348499 + 3.31574i
\(149\) −4.50192 7.79756i −0.368812 0.638801i 0.620568 0.784153i \(-0.286902\pi\)
−0.989380 + 0.145351i \(0.953569\pi\)
\(150\) 0 0
\(151\) 2.59566 + 1.88585i 0.211232 + 0.153469i 0.688371 0.725359i \(-0.258326\pi\)
−0.477139 + 0.878828i \(0.658326\pi\)
\(152\) −14.9611 + 16.6160i −1.21350 + 1.34773i
\(153\) 0 0
\(154\) −6.21295 −0.500654
\(155\) −0.0845781 3.38628i −0.00679348 0.271993i
\(156\) 0 0
\(157\) −1.02803 + 3.16395i −0.0820456 + 0.252510i −0.983662 0.180027i \(-0.942382\pi\)
0.901616 + 0.432537i \(0.142382\pi\)
\(158\) −17.4588 + 19.3899i −1.38894 + 1.54258i
\(159\) 0 0
\(160\) 5.30090 9.18143i 0.419073 0.725856i
\(161\) 0.465619 + 0.806476i 0.0366959 + 0.0635592i
\(162\) 0 0
\(163\) −1.40797 + 1.02295i −0.110281 + 0.0801236i −0.641559 0.767074i \(-0.721712\pi\)
0.531278 + 0.847198i \(0.321712\pi\)
\(164\) −0.0569589 0.541928i −0.00444774 0.0423175i
\(165\) 0 0
\(166\) 41.0037 18.2560i 3.18250 1.41694i
\(167\) −13.7102 + 2.91419i −1.06093 + 0.225507i −0.705145 0.709063i \(-0.749118\pi\)
−0.355780 + 0.934570i \(0.615785\pi\)
\(168\) 0 0
\(169\) 0.432821 + 0.192704i 0.0332939 + 0.0148234i
\(170\) −1.39730 4.30045i −0.107168 0.329829i
\(171\) 0 0
\(172\) −14.3750 6.40018i −1.09609 0.488009i
\(173\) −0.0117191 0.00249097i −0.000890985 0.000189385i 0.207466 0.978242i \(-0.433478\pi\)
−0.208357 + 0.978053i \(0.566812\pi\)
\(174\) 0 0
\(175\) 7.30400 3.25195i 0.552131 0.245824i
\(176\) 11.5903 + 12.8723i 0.873651 + 0.970288i
\(177\) 0 0
\(178\) −33.3341 + 24.2186i −2.49849 + 1.81526i
\(179\) −1.04299 + 9.92334i −0.0779564 + 0.741706i 0.883812 + 0.467842i \(0.154968\pi\)
−0.961769 + 0.273864i \(0.911698\pi\)
\(180\) 0 0
\(181\) 9.30158 16.1108i 0.691381 1.19751i −0.280004 0.959999i \(-0.590336\pi\)
0.971385 0.237509i \(-0.0763308\pi\)
\(182\) 13.7956 + 10.0231i 1.02260 + 0.742963i
\(183\) 0 0
\(184\) 1.45108 4.46598i 0.106975 0.329236i
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) 10.8831 33.4946i 0.793728 2.44284i
\(189\) 0 0
\(190\) −3.39980 2.47010i −0.246647 0.179200i
\(191\) 0.599059 1.03760i 0.0433464 0.0750782i −0.843538 0.537069i \(-0.819531\pi\)
0.886885 + 0.461991i \(0.152865\pi\)
\(192\) 0 0
\(193\) −1.33029 + 12.6568i −0.0957562 + 0.911059i 0.836184 + 0.548448i \(0.184781\pi\)
−0.931941 + 0.362611i \(0.881885\pi\)
\(194\) 2.78398 2.02268i 0.199878 0.145220i
\(195\) 0 0
\(196\) −14.0795 15.6368i −1.00568 1.11692i
\(197\) 2.71195 1.20744i 0.193218 0.0860263i −0.307847 0.951436i \(-0.599608\pi\)
0.501065 + 0.865410i \(0.332942\pi\)
\(198\) 0 0
\(199\) 12.8960 + 2.74112i 0.914170 + 0.194313i 0.640900 0.767625i \(-0.278561\pi\)
0.273270 + 0.961937i \(0.411895\pi\)
\(200\) −36.8307 16.3981i −2.60433 1.15952i
\(201\) 0 0
\(202\) −6.75039 20.7755i −0.474955 1.46176i
\(203\) −12.8271 5.71100i −0.900287 0.400834i
\(204\) 0 0
\(205\) 0.0619201 0.0131615i 0.00432469 0.000919241i
\(206\) 37.2385 16.5796i 2.59453 1.15516i
\(207\) 0 0
\(208\) −4.96940 47.2807i −0.344566 3.27832i
\(209\) 2.77816 2.01845i 0.192169 0.139619i
\(210\) 0 0
\(211\) −9.16614 15.8762i −0.631023 1.09296i −0.987343 0.158600i \(-0.949302\pi\)
0.356320 0.934364i \(-0.384031\pi\)
\(212\) 7.32843 12.6932i 0.503318 0.871773i
\(213\) 0 0
\(214\) 22.2769 24.7410i 1.52282 1.69126i
\(215\) 0.564887 1.73854i 0.0385250 0.118568i
\(216\) 0 0
\(217\) −4.12881 8.68322i −0.280282 0.589456i
\(218\) 19.3949 1.31359
\(219\) 0 0
\(220\) −2.85118 + 3.16656i −0.192227 + 0.213489i
\(221\) −8.20455 5.96096i −0.551898 0.400977i
\(222\) 0 0
\(223\) −4.69801 8.13718i −0.314602 0.544906i 0.664751 0.747065i \(-0.268538\pi\)
−0.979353 + 0.202159i \(0.935204\pi\)
\(224\) 3.14557 29.9281i 0.210172 1.99965i
\(225\) 0 0
\(226\) 4.68807 + 44.6040i 0.311846 + 2.96702i
\(227\) −5.66046 6.28658i −0.375698 0.417255i 0.525410 0.850849i \(-0.323912\pi\)
−0.901108 + 0.433594i \(0.857245\pi\)
\(228\) 0 0
\(229\) −22.3443 + 4.74942i −1.47655 + 0.313850i −0.874663 0.484731i \(-0.838917\pi\)
−0.601887 + 0.798582i \(0.705584\pi\)
\(230\) 0.863293 + 0.183499i 0.0569238 + 0.0120995i
\(231\) 0 0
\(232\) 21.8792 + 67.3372i 1.43644 + 4.42090i
\(233\) −5.02260 15.4580i −0.329042 1.01269i −0.969583 0.244762i \(-0.921290\pi\)
0.640542 0.767923i \(-0.278710\pi\)
\(234\) 0 0
\(235\) 4.00196 + 0.850643i 0.261059 + 0.0554899i
\(236\) 2.38828 0.507644i 0.155463 0.0330448i
\(237\) 0 0
\(238\) −8.58821 9.53817i −0.556691 0.618268i
\(239\) 1.91005 + 18.1729i 0.123551 + 1.17551i 0.864035 + 0.503433i \(0.167930\pi\)
−0.740484 + 0.672074i \(0.765404\pi\)
\(240\) 0 0
\(241\) 1.89944 18.0720i 0.122354 1.16412i −0.745222 0.666816i \(-0.767657\pi\)
0.867576 0.497304i \(-0.165677\pi\)
\(242\) 12.3900 + 21.4602i 0.796461 + 1.37951i
\(243\) 0 0
\(244\) 21.6697 + 15.7440i 1.38726 + 1.00790i
\(245\) 1.63564 1.81656i 0.104497 0.116056i
\(246\) 0 0
\(247\) −9.42508 −0.599704
\(248\) −18.6079 + 44.7703i −1.18160 + 2.84292i
\(249\) 0 0
\(250\) 4.87032 14.9893i 0.308026 0.948007i
\(251\) 15.3433 17.0405i 0.968461 1.07558i −0.0286471 0.999590i \(-0.509120\pi\)
0.997108 0.0759953i \(-0.0242134\pi\)
\(252\) 0 0
\(253\) −0.360602 + 0.624580i −0.0226708 + 0.0392670i
\(254\) 17.3642 + 30.0757i 1.08953 + 1.88712i
\(255\) 0 0
\(256\) −13.0179 + 9.45807i −0.813620 + 0.591129i
\(257\) 0.0111002 + 0.105611i 0.000692411 + 0.00658785i 0.994863 0.101234i \(-0.0322791\pi\)
−0.994170 + 0.107822i \(0.965612\pi\)
\(258\) 0 0
\(259\) −12.2183 + 5.43996i −0.759211 + 0.338022i
\(260\) 11.4394 2.43152i 0.709443 0.150797i
\(261\) 0 0
\(262\) 5.99105 + 2.66739i 0.370128 + 0.164792i
\(263\) 2.25499 + 6.94015i 0.139049 + 0.427948i 0.996198 0.0871204i \(-0.0277665\pi\)
−0.857149 + 0.515068i \(0.827766\pi\)
\(264\) 0 0
\(265\) 1.55550 + 0.692555i 0.0955539 + 0.0425433i
\(266\) −11.6677 2.48004i −0.715391 0.152061i
\(267\) 0 0
\(268\) 39.7014 17.6762i 2.42515 1.07974i
\(269\) −10.8529 12.0533i −0.661711 0.734905i 0.315088 0.949063i \(-0.397966\pi\)
−0.976799 + 0.214158i \(0.931299\pi\)
\(270\) 0 0
\(271\) 4.16291 3.02453i 0.252879 0.183727i −0.454123 0.890939i \(-0.650047\pi\)
0.707002 + 0.707212i \(0.250047\pi\)
\(272\) −3.74034 + 35.5870i −0.226792 + 2.15778i
\(273\) 0 0
\(274\) 10.9541 18.9730i 0.661760 1.14620i
\(275\) 5.00939 + 3.63954i 0.302078 + 0.219472i
\(276\) 0 0
\(277\) −5.22944 + 16.0946i −0.314207 + 0.967029i 0.661873 + 0.749616i \(0.269762\pi\)
−0.976080 + 0.217413i \(0.930238\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) −0.589193 + 1.81335i −0.0351483 + 0.108175i −0.967091 0.254429i \(-0.918112\pi\)
0.931943 + 0.362605i \(0.118112\pi\)
\(282\) 0 0
\(283\) 12.3859 + 8.99888i 0.736265 + 0.534928i 0.891539 0.452944i \(-0.149626\pi\)
−0.155274 + 0.987871i \(0.549626\pi\)
\(284\) 12.4605 21.5823i 0.739396 1.28067i
\(285\) 0 0
\(286\) −1.38043 + 13.1339i −0.0816268 + 0.776627i
\(287\) 0.145368 0.105616i 0.00858081 0.00623433i
\(288\) 0 0
\(289\) −6.26763 6.96091i −0.368684 0.409465i
\(290\) −12.1569 + 5.41259i −0.713876 + 0.317838i
\(291\) 0 0
\(292\) −38.4504 8.17289i −2.25014 0.478282i
\(293\) −24.4772 10.8980i −1.42998 0.636666i −0.461810 0.886979i \(-0.652800\pi\)
−0.968165 + 0.250313i \(0.919467\pi\)
\(294\) 0 0
\(295\) 0.0876522 + 0.269766i 0.00510331 + 0.0157064i
\(296\) 61.6115 + 27.4312i 3.58110 + 1.59441i
\(297\) 0 0
\(298\) −23.6924 + 5.03599i −1.37247 + 0.291727i
\(299\) 1.80831 0.805113i 0.104577 0.0465609i
\(300\) 0 0
\(301\) −0.542373 5.16033i −0.0312619 0.297437i
\(302\) 6.98272 5.07324i 0.401810 0.291932i
\(303\) 0 0
\(304\) 16.6278 + 28.8002i 0.953670 + 1.65181i
\(305\) −1.55584 + 2.69480i −0.0890873 + 0.154304i
\(306\) 0 0
\(307\) 5.98956 6.65208i 0.341842 0.379654i −0.547570 0.836760i \(-0.684447\pi\)
0.889413 + 0.457105i \(0.151114\pi\)
\(308\) −3.73749 + 11.5028i −0.212963 + 0.655434i
\(309\) 0 0
\(310\) −8.73408 2.59864i −0.496062 0.147593i
\(311\) −20.6556 −1.17127 −0.585637 0.810574i \(-0.699156\pi\)
−0.585637 + 0.810574i \(0.699156\pi\)
\(312\) 0 0
\(313\) 0.301993 0.335397i 0.0170696 0.0189577i −0.734550 0.678555i \(-0.762606\pi\)
0.751619 + 0.659597i \(0.229273\pi\)
\(314\) 7.24032 + 5.26040i 0.408595 + 0.296862i
\(315\) 0 0
\(316\) 25.3964 + 43.9879i 1.42866 + 2.47451i
\(317\) −0.583357 + 5.55027i −0.0327646 + 0.311734i 0.965849 + 0.259104i \(0.0834272\pi\)
−0.998614 + 0.0526304i \(0.983239\pi\)
\(318\) 0 0
\(319\) −1.13666 10.8146i −0.0636407 0.605501i
\(320\) −8.53903 9.48355i −0.477346 0.530147i
\(321\) 0 0
\(322\) 2.45043 0.520855i 0.136557 0.0290261i
\(323\) 6.93901 + 1.47493i 0.386097 + 0.0820674i
\(324\) 0 0
\(325\) −5.25165 16.1629i −0.291309 0.896557i
\(326\) 1.44676 + 4.45266i 0.0801284 + 0.246610i
\(327\) 0 0
\(328\) −0.886270 0.188382i −0.0489360 0.0104017i
\(329\) 11.3595 2.41453i 0.626267 0.133117i
\(330\) 0 0
\(331\) 16.1966 + 17.9882i 0.890246 + 0.988719i 0.999986 0.00524168i \(-0.00166849\pi\)
−0.109740 + 0.993960i \(0.535002\pi\)
\(332\) −9.13329 86.8975i −0.501255 4.76912i
\(333\) 0 0
\(334\) −3.94140 + 37.4999i −0.215664 + 2.05191i
\(335\) 2.52433 + 4.37226i 0.137919 + 0.238882i
\(336\) 0 0
\(337\) −8.92830 6.48679i −0.486355 0.353358i 0.317426 0.948283i \(-0.397182\pi\)
−0.803781 + 0.594925i \(0.797182\pi\)
\(338\) 0.852838 0.947173i 0.0463883 0.0515194i
\(339\) 0 0
\(340\) −8.80253 −0.477384
\(341\) 4.22504 6.13158i 0.228799 0.332044i
\(342\) 0 0
\(343\) 5.87953 18.0953i 0.317465 0.977056i
\(344\) −17.5075 + 19.4440i −0.943941 + 1.04835i
\(345\) 0 0
\(346\) −0.0161152 + 0.0279124i −0.000866360 + 0.00150058i
\(347\) −9.28369 16.0798i −0.498375 0.863210i 0.501624 0.865086i \(-0.332736\pi\)
−0.999998 + 0.00187589i \(0.999403\pi\)
\(348\) 0 0
\(349\) 26.0298 18.9118i 1.39334 1.01232i 0.397855 0.917448i \(-0.369755\pi\)
0.995489 0.0948756i \(-0.0302453\pi\)
\(350\) −2.24824 21.3906i −0.120173 1.14337i
\(351\) 0 0
\(352\) 21.2908 9.47926i 1.13480 0.505246i
\(353\) 31.5094 6.69754i 1.67708 0.356474i 0.731493 0.681849i \(-0.238824\pi\)
0.945585 + 0.325375i \(0.105490\pi\)
\(354\) 0 0
\(355\) 2.64482 + 1.17755i 0.140373 + 0.0624980i
\(356\) 24.7864 + 76.2846i 1.31367 + 4.04307i
\(357\) 0 0
\(358\) 24.5217 + 10.9178i 1.29601 + 0.577023i
\(359\) 20.6998 + 4.39988i 1.09249 + 0.232217i 0.718718 0.695302i \(-0.244729\pi\)
0.373777 + 0.927519i \(0.378063\pi\)
\(360\) 0 0
\(361\) −11.3344 + 5.04639i −0.596547 + 0.265600i
\(362\) −33.4869 37.1910i −1.76003 1.95472i
\(363\) 0 0
\(364\) 26.8560 19.5120i 1.40764 1.02271i
\(365\) 0.477344 4.54163i 0.0249853 0.237720i
\(366\) 0 0
\(367\) −6.49822 + 11.2552i −0.339204 + 0.587519i −0.984283 0.176597i \(-0.943491\pi\)
0.645079 + 0.764116i \(0.276824\pi\)
\(368\) −5.65042 4.10527i −0.294549 0.214002i
\(369\) 0 0
\(370\) −3.91704 + 12.0554i −0.203637 + 0.626730i
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) 3.07165 9.45355i 0.158831 0.488832i
\(375\) 0 0
\(376\) −47.3762 34.4208i −2.44324 1.77512i
\(377\) −14.9228 + 25.8471i −0.768566 + 1.33119i
\(378\) 0 0
\(379\) 1.56330 14.8738i 0.0803013 0.764016i −0.878078 0.478518i \(-0.841174\pi\)
0.958379 0.285498i \(-0.0921591\pi\)
\(380\) −6.61840 + 4.80855i −0.339517 + 0.246673i
\(381\) 0 0
\(382\) −2.15669 2.39525i −0.110346 0.122552i
\(383\) 10.6431 4.73862i 0.543838 0.242132i −0.116382 0.993205i \(-0.537130\pi\)
0.660220 + 0.751072i \(0.270463\pi\)
\(384\) 0 0
\(385\) −1.37437 0.292131i −0.0700442 0.0148884i
\(386\) 31.2765 + 13.9252i 1.59193 + 0.708774i
\(387\) 0 0
\(388\) −2.07009 6.37110i −0.105093 0.323443i
\(389\) −13.1568 5.85779i −0.667077 0.297002i 0.0451198 0.998982i \(-0.485633\pi\)
−0.712197 + 0.701980i \(0.752300\pi\)
\(390\) 0 0
\(391\) −1.45732 + 0.309763i −0.0737000 + 0.0156654i
\(392\) −31.9624 + 14.2306i −1.61435 + 0.718753i
\(393\) 0 0
\(394\) −0.834763 7.94224i −0.0420547 0.400124i
\(395\) −4.77376 + 3.46834i −0.240194 + 0.174511i
\(396\) 0 0
\(397\) −7.89506 13.6746i −0.396242 0.686311i 0.597017 0.802229i \(-0.296352\pi\)
−0.993259 + 0.115918i \(0.963019\pi\)
\(398\) 17.7336 30.7155i 0.888904 1.53963i
\(399\) 0 0
\(400\) −40.1240 + 44.5622i −2.00620 + 2.22811i
\(401\) −9.58670 + 29.5048i −0.478737 + 1.47340i 0.362114 + 0.932134i \(0.382055\pi\)
−0.840851 + 0.541267i \(0.817945\pi\)
\(402\) 0 0
\(403\) −19.2734 + 6.79886i −0.960075 + 0.338675i
\(404\) −42.5252 −2.11571
\(405\) 0 0
\(406\) −25.2748 + 28.0705i −1.25437 + 1.39311i
\(407\) −8.37986 6.08832i −0.415374 0.301787i
\(408\) 0 0
\(409\) −3.29291 5.70349i −0.162824 0.282019i 0.773056 0.634337i \(-0.218727\pi\)
−0.935880 + 0.352318i \(0.885394\pi\)
\(410\) 0.0178008 0.169363i 0.000879119 0.00836425i
\(411\) 0 0
\(412\) −8.29462 78.9180i −0.408647 3.88801i
\(413\) 0.538735 + 0.598326i 0.0265094 + 0.0294417i
\(414\) 0 0
\(415\) 9.92882 2.11043i 0.487386 0.103597i
\(416\) −62.5679 13.2992i −3.06764 0.652047i
\(417\) 0 0
\(418\) −2.85469 8.78583i −0.139627 0.429729i
\(419\) 4.53389 + 13.9539i 0.221495 + 0.681692i 0.998628 + 0.0523559i \(0.0166730\pi\)
−0.777133 + 0.629336i \(0.783327\pi\)
\(420\) 0 0
\(421\) 26.1321 + 5.55454i 1.27360 + 0.270712i 0.794616 0.607112i \(-0.207672\pi\)
0.478983 + 0.877824i \(0.341006\pi\)
\(422\) −48.2390 + 10.2535i −2.34824 + 0.499133i
\(423\) 0 0
\(424\) −16.3074 18.1113i −0.791959 0.879560i
\(425\) 1.33708 + 12.7214i 0.0648577 + 0.617079i
\(426\) 0 0
\(427\) −0.923240 + 8.78404i −0.0446787 + 0.425090i
\(428\) −32.4052 56.1274i −1.56636 2.71302i
\(429\) 0 0
\(430\) −3.97845 2.89052i −0.191858 0.139393i
\(431\) −2.66850 + 2.96367i −0.128537 + 0.142755i −0.803978 0.594660i \(-0.797287\pi\)
0.675441 + 0.737414i \(0.263954\pi\)
\(432\) 0 0
\(433\) 18.0766 0.868704 0.434352 0.900743i \(-0.356977\pi\)
0.434352 + 0.900743i \(0.356977\pi\)
\(434\) −25.6482 + 3.34513i −1.23115 + 0.160571i
\(435\) 0 0
\(436\) 11.6673 35.9082i 0.558762 1.71969i
\(437\) −0.926510 + 1.02899i −0.0443210 + 0.0492234i
\(438\) 0 0
\(439\) −11.4543 + 19.8394i −0.546684 + 0.946884i 0.451815 + 0.892112i \(0.350777\pi\)
−0.998499 + 0.0547723i \(0.982557\pi\)
\(440\) 3.54257 + 6.13591i 0.168885 + 0.292518i
\(441\) 0 0
\(442\) −22.0715 + 16.0359i −1.04984 + 0.762750i
\(443\) −2.24645 21.3736i −0.106732 1.01549i −0.908509 0.417866i \(-0.862778\pi\)
0.801777 0.597624i \(-0.203888\pi\)
\(444\) 0 0
\(445\) −8.51257 + 3.79004i −0.403535 + 0.179665i
\(446\) −24.7244 + 5.25533i −1.17073 + 0.248847i
\(447\) 0 0
\(448\) −33.0912 14.7331i −1.56341 0.696075i
\(449\) −5.80940 17.8795i −0.274163 0.843786i −0.989440 0.144945i \(-0.953700\pi\)
0.715277 0.698841i \(-0.246300\pi\)
\(450\) 0 0
\(451\) 0.127127 + 0.0566007i 0.00598619 + 0.00266522i
\(452\) 85.4012 + 18.1526i 4.01694 + 0.853826i
\(453\) 0 0
\(454\) −20.7897 + 9.25617i −0.975709 + 0.434414i
\(455\) 2.58045 + 2.86588i 0.120973 + 0.134354i
\(456\) 0 0
\(457\) −3.32182 + 2.41344i −0.155388 + 0.112896i −0.662763 0.748830i \(-0.730616\pi\)
0.507374 + 0.861726i \(0.330616\pi\)
\(458\) −6.42352 + 61.1158i −0.300152 + 2.85575i
\(459\) 0 0
\(460\) 0.859060 1.48794i 0.0400539 0.0693754i
\(461\) −18.5063 13.4456i −0.861924 0.626225i 0.0664836 0.997788i \(-0.478822\pi\)
−0.928408 + 0.371563i \(0.878822\pi\)
\(462\) 0 0
\(463\) −5.11947 + 15.7561i −0.237922 + 0.732249i 0.758798 + 0.651326i \(0.225787\pi\)
−0.996720 + 0.0809233i \(0.974213\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) −11.7878 + 36.2792i −0.545476 + 1.67880i 0.174379 + 0.984679i \(0.444208\pi\)
−0.719855 + 0.694124i \(0.755792\pi\)
\(468\) 0 0
\(469\) 11.5936 + 8.42323i 0.535342 + 0.388949i
\(470\) 5.50321 9.53184i 0.253844 0.439671i
\(471\) 0 0
\(472\) 0.424374 4.03765i 0.0195334 0.185848i
\(473\) 3.25101 2.36200i 0.149482 0.108605i
\(474\) 0 0
\(475\) 7.95463 + 8.83451i 0.364984 + 0.405355i
\(476\) −22.8256 + 10.1626i −1.04621 + 0.465802i
\(477\) 0 0
\(478\) 48.0830 + 10.2204i 2.19926 + 0.467468i
\(479\) 30.7726 + 13.7008i 1.40603 + 0.626007i 0.962755 0.270377i \(-0.0871483\pi\)
0.443279 + 0.896383i \(0.353815\pi\)
\(480\) 0 0
\(481\) 8.78511 + 27.0378i 0.400567 + 1.23282i
\(482\) −44.6580 19.8830i −2.03412 0.905647i
\(483\) 0 0
\(484\) 47.1853 10.0295i 2.14479 0.455888i
\(485\) 0.710949 0.316535i 0.0322825 0.0143731i
\(486\) 0 0
\(487\) 2.16130 + 20.5634i 0.0979379 + 0.931817i 0.927606 + 0.373560i \(0.121863\pi\)
−0.829668 + 0.558257i \(0.811470\pi\)
\(488\) 36.0319 26.1787i 1.63109 1.18506i
\(489\) 0 0
\(490\) −3.28793 5.69487i −0.148534 0.257268i
\(491\) 12.3664 21.4192i 0.558087 0.966634i −0.439570 0.898209i \(-0.644869\pi\)
0.997656 0.0684258i \(-0.0217976\pi\)
\(492\) 0 0
\(493\) 15.0314 16.6941i 0.676982 0.751864i
\(494\) −7.83511 + 24.1140i −0.352518 + 1.08494i
\(495\) 0 0
\(496\) 54.7775 + 46.8990i 2.45958 + 2.10583i
\(497\) 8.21771 0.368615
\(498\) 0 0
\(499\) −16.4340 + 18.2518i −0.735685 + 0.817061i −0.988622 0.150422i \(-0.951937\pi\)
0.252937 + 0.967483i \(0.418604\pi\)
\(500\) −24.8218 18.0341i −1.11006 0.806509i
\(501\) 0 0
\(502\) −30.8429 53.4215i −1.37659 2.38432i
\(503\) 1.54066 14.6584i 0.0686946 0.653585i −0.904951 0.425517i \(-0.860092\pi\)
0.973645 0.228068i \(-0.0732410\pi\)
\(504\) 0 0
\(505\) −0.516394 4.91316i −0.0229792 0.218633i
\(506\) 1.29821 + 1.44181i 0.0577126 + 0.0640963i
\(507\) 0 0
\(508\) 66.1285 14.0561i 2.93398 0.623637i
\(509\) 15.1674 + 3.22394i 0.672285 + 0.142899i 0.531392 0.847126i \(-0.321669\pi\)
0.140893 + 0.990025i \(0.455003\pi\)
\(510\) 0 0
\(511\) −4.00557 12.3279i −0.177196 0.545353i
\(512\) 0.0418393 + 0.128768i 0.00184905 + 0.00569080i
\(513\) 0 0
\(514\) 0.279433 + 0.0593953i 0.0123253 + 0.00261982i
\(515\) 9.01709 1.91664i 0.397341 0.0844574i
\(516\) 0 0
\(517\) 6.01812 + 6.68380i 0.264677 + 0.293953i
\(518\) 3.76092 + 35.7828i 0.165245 + 1.57220i
\(519\) 0 0
\(520\) 2.03268 19.3396i 0.0891388 0.848099i
\(521\) 14.7073 + 25.4738i 0.644337 + 1.11603i 0.984454 + 0.175642i \(0.0562001\pi\)
−0.340117 + 0.940383i \(0.610467\pi\)
\(522\) 0 0
\(523\) −36.4268 26.4656i −1.59283 1.15726i −0.899754 0.436397i \(-0.856254\pi\)
−0.693078 0.720863i \(-0.743746\pi\)
\(524\) 8.54247 9.48737i 0.373180 0.414458i
\(525\) 0 0
\(526\) 19.6309 0.855947
\(527\) 15.2535 1.98942i 0.664455 0.0866604i
\(528\) 0 0
\(529\) −7.01753 + 21.5977i −0.305110 + 0.939032i
\(530\) 3.06499 3.40402i 0.133135 0.147861i
\(531\) 0 0
\(532\) −11.6105 + 20.1099i −0.503378 + 0.871876i
\(533\) −0.190970 0.330769i −0.00827182 0.0143272i
\(534\) 0 0
\(535\) 6.09119 4.42551i 0.263345 0.191331i
\(536\) −7.55343 71.8661i −0.326258 3.10414i
\(537\) 0 0
\(538\) −39.8604 + 17.7470i −1.71850 + 0.765127i
\(539\) 5.25607 1.11721i 0.226395 0.0481217i
\(540\) 0 0
\(541\) 34.5126 + 15.3660i 1.48381 + 0.660635i 0.979234 0.202731i \(-0.0649818\pi\)
0.504577 + 0.863367i \(0.331648\pi\)
\(542\) −4.27759 13.1651i −0.183738 0.565488i
\(543\) 0 0
\(544\) 43.9830 + 19.5825i 1.88576 + 0.839593i
\(545\) 4.29034 + 0.911941i 0.183778 + 0.0390632i
\(546\) 0 0
\(547\) −16.6345 + 7.40617i −0.711241 + 0.316665i −0.730274 0.683154i \(-0.760608\pi\)
0.0190333 + 0.999819i \(0.493941\pi\)
\(548\) −28.5375 31.6942i −1.21906 1.35391i
\(549\) 0 0
\(550\) 13.4761 9.79092i 0.574621 0.417486i
\(551\) 2.18229 20.7631i 0.0929686 0.884537i
\(552\) 0 0
\(553\) −8.37446 + 14.5050i −0.356118 + 0.616815i
\(554\) 36.8305 + 26.7590i 1.56478 + 1.13688i
\(555\) 0 0
\(556\) −2.19015 + 6.74059i −0.0928831 + 0.285865i
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) 4.20481 12.9411i 0.177686 0.546860i
\(561\) 0 0
\(562\) 4.14964 + 3.01489i 0.175042 + 0.127175i
\(563\) −18.0809 + 31.3170i −0.762019 + 1.31986i 0.179790 + 0.983705i \(0.442458\pi\)
−0.941808 + 0.336150i \(0.890875\pi\)
\(564\) 0 0
\(565\) −1.06022 + 10.0873i −0.0446037 + 0.424375i
\(566\) 33.3200 24.2084i 1.40054 1.01755i
\(567\) 0 0
\(568\) −27.7276 30.7946i −1.16342 1.29211i
\(569\) −37.9119 + 16.8795i −1.58935 + 0.707624i −0.995303 0.0968056i \(-0.969137\pi\)
−0.594047 + 0.804430i \(0.702471\pi\)
\(570\) 0 0
\(571\) 31.6853 + 6.73491i 1.32599 + 0.281847i 0.815859 0.578251i \(-0.196265\pi\)
0.510128 + 0.860099i \(0.329598\pi\)
\(572\) 23.4861 + 10.4567i 0.982004 + 0.437216i
\(573\) 0 0
\(574\) −0.149373 0.459722i −0.00623470 0.0191884i
\(575\) −2.28085 1.01550i −0.0951182 0.0423494i
\(576\) 0 0
\(577\) −40.0870 + 8.52075i −1.66884 + 0.354723i −0.942911 0.333044i \(-0.891924\pi\)
−0.725931 + 0.687768i \(0.758591\pi\)
\(578\) −23.0197 + 10.2490i −0.957494 + 0.426304i
\(579\) 0 0
\(580\) 2.70786 + 25.7636i 0.112438 + 1.06977i
\(581\) 23.3096 16.9354i 0.967046 0.702600i
\(582\) 0 0
\(583\) 1.87151 + 3.24155i 0.0775100 + 0.134251i
\(584\) −32.6814 + 56.6059i −1.35237 + 2.34237i
\(585\) 0 0
\(586\) −48.2304 + 53.5652i −1.99238 + 2.21276i
\(587\) −7.88963 + 24.2818i −0.325640 + 1.00222i 0.645511 + 0.763751i \(0.276644\pi\)
−0.971151 + 0.238466i \(0.923356\pi\)
\(588\) 0 0
\(589\) 10.3820 9.82833i 0.427783 0.404969i
\(590\) 0.763058 0.0314146
\(591\) 0 0
\(592\) 67.1206 74.5449i 2.75864 3.06378i
\(593\) 36.0269 + 26.1751i 1.47945 + 1.07488i 0.977734 + 0.209850i \(0.0672976\pi\)
0.501716 + 0.865033i \(0.332702\pi\)
\(594\) 0 0
\(595\) −1.45132 2.51375i −0.0594982 0.103054i
\(596\) −4.92879 + 46.8943i −0.201891 + 1.92086i
\(597\) 0 0
\(598\) −0.556616 5.29584i −0.0227617 0.216563i
\(599\) −12.7001 14.1049i −0.518911 0.576309i 0.425549 0.904935i \(-0.360081\pi\)
−0.944460 + 0.328627i \(0.893414\pi\)
\(600\) 0 0
\(601\) 12.5592 2.66955i 0.512301 0.108893i 0.0554947 0.998459i \(-0.482326\pi\)
0.456807 + 0.889566i \(0.348993\pi\)
\(602\) −13.6535 2.90215i −0.556477 0.118283i
\(603\) 0 0
\(604\) −5.19217 15.9799i −0.211267 0.650212i
\(605\) 1.73175 + 5.32977i 0.0704056 + 0.216686i
\(606\) 0 0
\(607\) 37.3059 + 7.92960i 1.51420 + 0.321853i 0.888742 0.458407i \(-0.151580\pi\)
0.625456 + 0.780260i \(0.284913\pi\)
\(608\) 43.7670 9.30297i 1.77499 0.377285i
\(609\) 0 0
\(610\) 5.60124 + 6.22081i 0.226788 + 0.251873i
\(611\) −2.58030 24.5499i −0.104388 0.993184i
\(612\) 0 0
\(613\) 1.93821 18.4408i 0.0782834 0.744817i −0.883022 0.469332i \(-0.844495\pi\)
0.961305 0.275485i \(-0.0888385\pi\)
\(614\) −12.0401 20.8541i −0.485901 0.841605i
\(615\) 0 0
\(616\) 16.2701 + 11.8209i 0.655541 + 0.476278i
\(617\) −5.44374 + 6.04589i −0.219157 + 0.243398i −0.842691 0.538398i \(-0.819030\pi\)
0.623534 + 0.781796i \(0.285696\pi\)
\(618\) 0 0
\(619\) −5.36063 −0.215462 −0.107731 0.994180i \(-0.534359\pi\)
−0.107731 + 0.994180i \(0.534359\pi\)
\(620\) −10.0653 + 14.6072i −0.404232 + 0.586641i
\(621\) 0 0
\(622\) −17.1711 + 52.8472i −0.688499 + 2.11898i
\(623\) −17.6981 + 19.6557i −0.709058 + 0.787489i
\(624\) 0 0
\(625\) −9.79252 + 16.9611i −0.391701 + 0.678446i
\(626\) −0.607062 1.05146i −0.0242631 0.0420249i
\(627\) 0 0
\(628\) 14.0948 10.2404i 0.562442 0.408638i
\(629\) −2.23670 21.2808i −0.0891830 0.848519i
\(630\) 0 0
\(631\) 26.5358 11.8145i 1.05637 0.470327i 0.196324 0.980539i \(-0.437100\pi\)
0.860049 + 0.510212i \(0.170433\pi\)
\(632\) 82.6116 17.5596i 3.28611 0.698485i
\(633\) 0 0
\(634\) 13.7154 + 6.10647i 0.544707 + 0.242519i
\(635\) 2.42699 + 7.46949i 0.0963120 + 0.296418i
\(636\) 0 0
\(637\) −13.4733 5.99868i −0.533830 0.237677i
\(638\) −28.6139 6.08208i −1.13284 0.240792i
\(639\) 0 0
\(640\) −11.9916 + 5.33902i −0.474011 + 0.211043i
\(641\) 18.4717 + 20.5149i 0.729589 + 0.810290i 0.987788 0.155801i \(-0.0497959\pi\)
−0.258200 + 0.966092i \(0.583129\pi\)
\(642\) 0 0
\(643\) 3.42136 2.48577i 0.134925 0.0980291i −0.518275 0.855214i \(-0.673426\pi\)
0.653201 + 0.757185i \(0.273426\pi\)
\(644\) 0.509768 4.85012i 0.0200877 0.191121i
\(645\) 0 0
\(646\) 9.54202 16.5273i 0.375426 0.650257i
\(647\) −21.2617 15.4475i −0.835883 0.607304i 0.0853349 0.996352i \(-0.472804\pi\)
−0.921217 + 0.389048i \(0.872804\pi\)
\(648\) 0 0
\(649\) −0.192683 + 0.593018i −0.00756348 + 0.0232780i
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) 4.12592 12.6983i 0.161460 0.496922i −0.837298 0.546746i \(-0.815866\pi\)
0.998758 + 0.0498246i \(0.0158662\pi\)
\(654\) 0 0
\(655\) 1.19986 + 0.871749i 0.0468824 + 0.0340621i
\(656\) −0.673821 + 1.16709i −0.0263083 + 0.0455673i
\(657\) 0 0
\(658\) 3.26561 31.0702i 0.127307 1.21124i
\(659\) −12.4717 + 9.06119i −0.485827 + 0.352974i −0.803577 0.595200i \(-0.797073\pi\)
0.317750 + 0.948174i \(0.397073\pi\)
\(660\) 0 0
\(661\) −3.16035 3.50992i −0.122923 0.136520i 0.678542 0.734562i \(-0.262612\pi\)
−0.801465 + 0.598042i \(0.795946\pi\)
\(662\) 59.4868 26.4852i 2.31202 1.02938i
\(663\) 0 0
\(664\) −142.112 30.2069i −5.51502 1.17225i
\(665\) −2.46439 1.09722i −0.0955651 0.0425483i
\(666\) 0 0
\(667\) 1.35493 + 4.17006i 0.0524632 + 0.161465i
\(668\) 67.0573 + 29.8558i 2.59453 + 1.15516i
\(669\) 0 0
\(670\) 13.2849 2.82379i 0.513239 0.109092i
\(671\) −6.24895 + 2.78221i −0.241238 + 0.107406i
\(672\) 0 0
\(673\) 3.24801 + 30.9028i 0.125202 + 1.19121i 0.859046 + 0.511898i \(0.171057\pi\)
−0.733845 + 0.679317i \(0.762276\pi\)
\(674\) −24.0185 + 17.4505i −0.925158 + 0.672167i
\(675\) 0 0
\(676\) −1.24058 2.14875i −0.0477147 0.0826443i
\(677\) −4.51998 + 7.82883i −0.173717 + 0.300886i −0.939716 0.341955i \(-0.888911\pi\)
0.766000 + 0.642841i \(0.222244\pi\)
\(678\) 0 0
\(679\) 1.47810 1.64159i 0.0567242 0.0629986i
\(680\) −4.52297 + 13.9203i −0.173448 + 0.533818i
\(681\) 0 0
\(682\) −12.1753 15.9069i −0.466216 0.609107i
\(683\) −7.13535 −0.273027 −0.136513 0.990638i \(-0.543590\pi\)
−0.136513 + 0.990638i \(0.543590\pi\)
\(684\) 0 0
\(685\) 3.31525 3.68196i 0.126669 0.140681i
\(686\) −41.4091 30.0854i −1.58101 1.14867i
\(687\) 0 0
\(688\) 19.4579 + 33.7021i 0.741826 + 1.28488i
\(689\) 1.07385 10.2170i 0.0409103 0.389236i
\(690\) 0 0
\(691\) −3.81272 36.2756i −0.145043 1.37999i −0.788749 0.614716i \(-0.789271\pi\)
0.643706 0.765273i \(-0.277396\pi\)
\(692\) 0.0419833 + 0.0466272i 0.00159597 + 0.00177250i
\(693\) 0 0
\(694\) −48.8576 + 10.3850i −1.85461 + 0.394210i
\(695\) −0.805371 0.171187i −0.0305495 0.00649349i
\(696\) 0 0
\(697\) 0.0888351 + 0.273406i 0.00336487 + 0.0103560i
\(698\) −26.7469 82.3185i −1.01238 3.11580i
\(699\) 0 0
\(700\) −40.9555 8.70536i −1.54797 0.329032i
\(701\) −1.57916 + 0.335661i −0.0596441 + 0.0126777i −0.237637 0.971354i \(-0.576373\pi\)
0.177993 + 0.984032i \(0.443040\pi\)
\(702\) 0 0
\(703\) −13.3067 14.7786i −0.501873 0.557386i
\(704\) −2.93233 27.8993i −0.110516 1.05149i
\(705\) 0 0
\(706\) 9.05833 86.1843i 0.340915 3.24359i
\(707\) −7.01134 12.1440i −0.263688 0.456722i
\(708\) 0 0
\(709\) −9.29395 6.75245i −0.349042 0.253594i 0.399425 0.916766i \(-0.369210\pi\)
−0.748467 + 0.663172i \(0.769210\pi\)
\(710\) 5.21141 5.78785i 0.195581 0.217214i
\(711\) 0 0
\(712\) 133.372 4.99833
\(713\) −1.15235 + 2.77254i −0.0431558 + 0.103832i
\(714\) 0 0
\(715\) −0.922919 + 2.84045i −0.0345152 + 0.106227i
\(716\) 34.9649 38.8324i 1.30670 1.45124i
\(717\) 0 0
\(718\) 28.4649 49.3026i 1.06230 1.83996i
\(719\) −7.08549 12.2724i −0.264244 0.457685i 0.703121 0.711070i \(-0.251789\pi\)
−0.967365 + 0.253386i \(0.918456\pi\)
\(720\) 0 0
\(721\) 21.1692 15.3803i 0.788382 0.572793i
\(722\) 3.48883 + 33.1940i 0.129841 + 1.23535i
\(723\) 0 0
\(724\) −89.0009 + 39.6258i −3.30769 + 1.47268i
\(725\) 36.8222 7.82681i 1.36754 0.290680i
\(726\) 0 0
\(727\) −24.6180 10.9606i −0.913030 0.406507i −0.104205 0.994556i \(-0.533230\pi\)
−0.808826 + 0.588049i \(0.799896\pi\)
\(728\) −17.0569 52.4958i −0.632172 1.94562i
\(729\) 0 0
\(730\) −11.2229 4.99675i −0.415378 0.184938i
\(731\) 8.12005 + 1.72597i 0.300331 + 0.0638373i
\(732\) 0 0
\(733\) −25.9662 + 11.5609i −0.959083 + 0.427011i −0.825735 0.564058i \(-0.809239\pi\)
−0.133348 + 0.991069i \(0.542573\pi\)
\(734\) 23.3944 + 25.9822i 0.863504 + 0.959019i
\(735\) 0 0
\(736\) −7.60254 + 5.52357i −0.280233 + 0.203601i
\(737\) −1.16009 + 11.0375i −0.0427324 + 0.406572i
\(738\) 0 0
\(739\) 0.348653 0.603885i 0.0128254 0.0222143i −0.859541 0.511066i \(-0.829251\pi\)
0.872367 + 0.488852i \(0.162584\pi\)
\(740\) 19.9633 + 14.5042i 0.733866 + 0.533185i
\(741\) 0 0
\(742\) 4.01777 12.3654i 0.147497 0.453949i
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) −3.67929 + 11.3237i −0.134708 + 0.414589i
\(747\) 0 0
\(748\) −15.6548 11.3738i −0.572395 0.415869i
\(749\) 10.6856 18.5080i 0.390443 0.676267i
\(750\) 0 0
\(751\) 3.87445 36.8629i 0.141381 1.34515i −0.661920 0.749574i \(-0.730258\pi\)
0.803301 0.595573i \(-0.203075\pi\)
\(752\) −70.4650 + 51.1958i −2.56959 + 1.86692i
\(753\) 0 0
\(754\) 53.7242 + 59.6668i 1.95652 + 2.17294i
\(755\) 1.78319 0.793927i 0.0648969 0.0288940i
\(756\) 0 0
\(757\) −6.26211 1.33105i −0.227600 0.0483779i 0.0926997 0.995694i \(-0.470450\pi\)
−0.320300 + 0.947316i \(0.603784\pi\)
\(758\) −36.7549 16.3643i −1.33500 0.594380i
\(759\) 0 0
\(760\) 4.20351 + 12.9371i 0.152477 + 0.469277i
\(761\) 19.4940 + 8.67928i 0.706657 + 0.314624i 0.728412 0.685140i \(-0.240259\pi\)
−0.0217552 + 0.999763i \(0.506925\pi\)
\(762\) 0 0
\(763\) 12.1780 2.58852i 0.440874 0.0937106i
\(764\) −5.73201 + 2.55206i −0.207377 + 0.0923302i
\(765\) 0 0
\(766\) −3.27605 31.1696i −0.118369 1.12620i
\(767\) 1.38454 1.00593i 0.0499928 0.0363219i
\(768\) 0 0
\(769\) 6.12828 + 10.6145i 0.220991 + 0.382768i 0.955109 0.296254i \(-0.0957374\pi\)
−0.734118 + 0.679022i \(0.762404\pi\)
\(770\) −1.88993 + 3.27346i −0.0681084 + 0.117967i
\(771\) 0 0
\(772\) 44.5963 49.5292i 1.60506 1.78260i
\(773\) 10.7240 33.0050i 0.385714 1.18711i −0.550247 0.835002i \(-0.685466\pi\)
0.935961 0.352104i \(-0.114534\pi\)
\(774\) 0 0
\(775\) 22.6393 + 12.3276i 0.813227 + 0.442820i
\(776\) −11.1389 −0.399863
\(777\) 0 0
\(778\) −25.9244 + 28.7920i −0.929435 + 1.03224i
\(779\) 0.216146 + 0.157040i 0.00774425 + 0.00562652i
\(780\) 0 0
\(781\) 3.18213 + 5.51161i 0.113866 + 0.197221i
\(782\) −0.418951 + 3.98605i −0.0149817 + 0.142541i
\(783\) 0 0
\(784\) 5.43948 + 51.7532i 0.194267 + 1.84833i
\(785\) 1.35429 + 1.50409i 0.0483366 + 0.0536833i
\(786\) 0 0
\(787\) 19.6786 4.18281i 0.701465 0.149101i 0.156646 0.987655i \(-0.449932\pi\)
0.544819 + 0.838554i \(0.316598\pi\)
\(788\) −15.2066 3.23227i −0.541714 0.115145i
\(789\) 0 0
\(790\) 4.90526 + 15.0968i 0.174521 + 0.537122i
\(791\) 8.89666 + 27.3811i 0.316329 + 0.973559i
\(792\) 0 0
\(793\) 18.3640 + 3.90339i 0.652125 + 0.138613i
\(794\) −41.5496 + 8.83165i −1.47454 + 0.313423i
\(795\) 0 0
\(796\) −46.1995 51.3097i −1.63750 1.81863i
\(797\) 2.73885 + 26.0584i 0.0970150 + 0.923036i 0.929459 + 0.368926i \(0.120275\pi\)
−0.832444 + 0.554110i \(0.813059\pi\)
\(798\) 0 0
\(799\) −1.94213 + 18.4781i −0.0687076 + 0.653709i
\(800\) 40.3405 + 69.8717i 1.42625 + 2.47034i
\(801\) 0 0
\(802\) 67.5183 + 49.0549i 2.38416 + 1.73219i
\(803\) 6.71722 7.46022i 0.237045 0.263266i
\(804\) 0 0
\(805\) 0.566550 0.0199683
\(806\) 1.37278 + 54.9626i 0.0483543 + 1.93598i
\(807\) 0 0
\(808\) −21.8506 + 67.2491i −0.768700 + 2.36582i
\(809\) −24.3899 + 27.0877i −0.857504 + 0.952354i −0.999295 0.0375423i \(-0.988047\pi\)
0.141791 + 0.989897i \(0.454714\pi\)
\(810\) 0 0
\(811\) 9.55322 16.5467i 0.335459 0.581032i −0.648114 0.761543i \(-0.724442\pi\)
0.983573 + 0.180511i \(0.0577753\pi\)
\(812\) 36.7660 + 63.6805i 1.29023 + 2.23475i
\(813\) 0 0
\(814\) −22.5431 + 16.3785i −0.790136 + 0.574067i
\(815\) 0.110675 + 1.05300i 0.00387676 + 0.0368849i
\(816\) 0 0
\(817\) 7.04810 3.13802i 0.246582 0.109785i
\(818\) −17.3297 + 3.68355i −0.605920 + 0.128792i
\(819\) 0 0
\(820\) −0.302855 0.134840i −0.0105762 0.00470881i
\(821\) −12.1937 37.5285i −0.425565 1.30975i −0.902453 0.430789i \(-0.858235\pi\)
0.476888 0.878964i \(-0.341765\pi\)
\(822\) 0 0
\(823\) −28.8571 12.8480i −1.00589 0.447853i −0.163401 0.986560i \(-0.552246\pi\)
−0.842493 + 0.538707i \(0.818913\pi\)
\(824\) −129.063 27.4331i −4.49611 0.955678i
\(825\) 0 0
\(826\) 1.97866 0.880958i 0.0688465 0.0306525i
\(827\) −13.2688 14.7364i −0.461400 0.512436i 0.466879 0.884321i \(-0.345378\pi\)
−0.928279 + 0.371885i \(0.878712\pi\)
\(828\) 0 0
\(829\) −7.28104 + 5.28999i −0.252881 + 0.183729i −0.707003 0.707211i \(-0.749953\pi\)
0.454122 + 0.890940i \(0.349953\pi\)
\(830\) 2.85434 27.1572i 0.0990754 0.942640i
\(831\) 0 0
\(832\) −38.4977 + 66.6800i −1.33467 + 2.31171i
\(833\) 8.98066 + 6.52483i 0.311161 + 0.226072i
\(834\) 0 0
\(835\) −2.63511 + 8.11003i −0.0911917 + 0.280659i
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) 9.84070 30.2866i 0.339739 1.04561i −0.624602 0.780944i \(-0.714739\pi\)
0.964340 0.264665i \(-0.0852614\pi\)
\(840\) 0 0
\(841\) −30.0234 21.8133i −1.03529 0.752183i
\(842\) 35.9349 62.2411i 1.23840 2.14497i
\(843\) 0 0
\(844\) −10.0353 + 95.4791i −0.345428 + 3.28652i
\(845\) 0.233192 0.169424i 0.00802205 0.00582836i
\(846\) 0 0
\(847\) 10.6438 + 11.8212i 0.365726 + 0.406180i
\(848\) −33.1145 + 14.7435i −1.13716 + 0.506295i
\(849\) 0 0
\(850\) 33.6591 + 7.15447i 1.15450 + 0.245396i
\(851\) 3.81548 + 1.69876i 0.130793 + 0.0582328i
\(852\) 0 0
\(853\) −15.1702 46.6890i −0.519417 1.59860i −0.775099 0.631839i \(-0.782300\pi\)
0.255683 0.966761i \(-0.417700\pi\)
\(854\) 21.7064 + 9.66431i 0.742778 + 0.330706i
\(855\) 0 0
\(856\) −105.410 + 22.4056i −3.60285 + 0.765809i
\(857\) −17.5770 + 7.82580i −0.600420 + 0.267324i −0.684357 0.729147i \(-0.739917\pi\)
0.0839371 + 0.996471i \(0.473251\pi\)
\(858\) 0 0
\(859\) −0.485236 4.61672i −0.0165561 0.157520i 0.983120 0.182960i \(-0.0585680\pi\)
−0.999676 + 0.0254400i \(0.991901\pi\)
\(860\) −7.74487 + 5.62698i −0.264098 + 0.191878i
\(861\) 0 0
\(862\) 5.36418 + 9.29104i 0.182705 + 0.316454i
\(863\) −19.2652 + 33.3683i −0.655795 + 1.13587i 0.325899 + 0.945405i \(0.394333\pi\)
−0.981694 + 0.190466i \(0.939000\pi\)
\(864\) 0 0
\(865\) −0.00487728 + 0.00541676i −0.000165832 + 0.000184175i
\(866\) 15.0271 46.2487i 0.510642 1.57159i
\(867\) 0 0
\(868\) −9.23582 + 49.4981i −0.313484 + 1.68008i
\(869\) −12.9713 −0.440022
\(870\) 0 0
\(871\) 20.3823 22.6369i 0.690629 0.767021i
\(872\) −50.7901 36.9012i −1.71997 1.24963i
\(873\) 0 0
\(874\) 1.86246 + 3.22587i 0.0629986 + 0.109117i
\(875\) 1.05753 10.0618i 0.0357512 0.340150i
\(876\) 0 0
\(877\) 0.967760 + 9.20763i 0.0326789 + 0.310919i 0.998636 + 0.0522162i \(0.0166285\pi\)
−0.965957 + 0.258703i \(0.916705\pi\)
\(878\) 41.2370 + 45.7983i 1.39168 + 1.54562i
\(879\) 0 0
\(880\) 10.3078 2.19099i 0.347475 0.0738582i
\(881\) −17.4884 3.71727i −0.589198 0.125238i −0.0963414 0.995348i \(-0.530714\pi\)
−0.492857 + 0.870110i \(0.664047\pi\)
\(882\) 0 0
\(883\) −14.9303 45.9509i −0.502446 1.54637i −0.805022 0.593244i \(-0.797847\pi\)
0.302577 0.953125i \(-0.402153\pi\)
\(884\) 16.4118 + 50.5104i 0.551990 + 1.69885i
\(885\) 0 0
\(886\) −56.5516 12.0204i −1.89989 0.403834i
\(887\) 22.9984 4.88847i 0.772211 0.164139i 0.195077 0.980788i \(-0.437504\pi\)
0.577134 + 0.816649i \(0.304171\pi\)
\(888\) 0 0
\(889\) 14.9170 + 16.5670i 0.500298 + 0.555638i
\(890\) 2.62025 + 24.9300i 0.0878310 + 0.835656i
\(891\) 0 0
\(892\) −5.14346 + 48.9368i −0.172216 + 1.63852i
\(893\) 8.63379 + 14.9542i 0.288919 + 0.500422i
\(894\) 0 0
\(895\) 4.91110 + 3.56812i 0.164160 + 0.119269i
\(896\) −24.9312 + 27.6889i −0.832894 + 0.925022i
\(897\) 0 0
\(898\) −50.5739 −1.68767
\(899\) −10.5150 44.0327i −0.350696 1.46857i
\(900\) 0 0
\(901\) −2.38945 + 7.35398i −0.0796042 + 0.244996i
\(902\) 0.250494 0.278202i 0.00834053 0.00926310i
\(903\) 0 0
\(904\) 72.5879 125.726i 2.41424 4.18158i
\(905\) −5.65893 9.80156i −0.188109 0.325815i
\(906\) 0 0
\(907\) 10.1792 7.39560i 0.337994 0.245567i −0.405821 0.913952i \(-0.633014\pi\)
0.743815 + 0.668386i \(0.233014\pi\)
\(908\) 4.63076 + 44.0588i 0.153677 + 1.46214i
\(909\) 0 0
\(910\) 9.47746 4.21964i 0.314175 0.139880i
\(911\) −46.2512 + 9.83100i −1.53237 + 0.325715i −0.895432 0.445199i \(-0.853133\pi\)
−0.636939 + 0.770914i \(0.719800\pi\)
\(912\) 0 0
\(913\) 20.3847 + 9.07586i 0.674635 + 0.300367i
\(914\) 3.41333 + 10.5051i 0.112903 + 0.347479i
\(915\) 0 0
\(916\) 109.287 + 48.6578i 3.61095 + 1.60770i
\(917\) 4.11776 + 0.875258i 0.135981 + 0.0289036i
\(918\) 0 0
\(919\) −21.1320 + 9.40858i −0.697081 + 0.310360i −0.724511 0.689263i \(-0.757934\pi\)
0.0274300 + 0.999624i \(0.491268\pi\)
\(920\) −1.91161 2.12306i −0.0630238 0.0699951i
\(921\) 0 0
\(922\) −49.7848 + 36.1708i −1.63958 + 1.19122i
\(923\) 1.82586 17.3719i 0.0600990 0.571804i
\(924\) 0 0
\(925\) 17.9291 31.0541i 0.589506 1.02105i
\(926\) 36.0560 + 26.1962i 1.18488 + 0.860862i
\(927\) 0 0
\(928\) 43.7846 134.755i 1.43730 4.42355i
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) −26.3030 + 80.9524i −0.861585 + 2.65169i
\(933\) 0 0
\(934\) 83.0208 + 60.3181i 2.71652 + 1.97367i
\(935\) 1.12398 1.94679i 0.0367581 0.0636669i
\(936\) 0 0
\(937\) −2.06200 + 19.6186i −0.0673625 + 0.640911i 0.907797 + 0.419409i \(0.137763\pi\)
−0.975160 + 0.221502i \(0.928904\pi\)
\(938\) 31.1885 22.6598i 1.01834 0.739868i
\(939\) 0 0
\(940\) −14.3370 15.9228i −0.467620 0.519344i
\(941\) 8.06045 3.58874i 0.262763 0.116990i −0.271127 0.962544i \(-0.587396\pi\)
0.533890 + 0.845554i \(0.320730\pi\)
\(942\) 0 0
\(943\) −0.0548849 0.0116661i −0.00178730 0.000379902i
\(944\) −5.51642 2.45607i −0.179544 0.0799382i
\(945\) 0 0
\(946\) −3.34057 10.2812i −0.108611 0.334271i
\(947\) −14.2158 6.32930i −0.461953 0.205675i 0.162545 0.986701i \(-0.448030\pi\)
−0.624498 + 0.781026i \(0.714696\pi\)
\(948\) 0 0
\(949\) −26.9506 + 5.72853i −0.874854 + 0.185956i
\(950\) 29.2157 13.0077i 0.947883 0.422025i
\(951\) 0 0
\(952\) 4.34271 + 41.3181i 0.140748 + 1.33913i
\(953\) 7.80840 5.67314i 0.252939 0.183771i −0.454089 0.890956i \(-0.650035\pi\)
0.707028 + 0.707185i \(0.250035\pi\)
\(954\) 0 0
\(955\) −0.364458 0.631260i −0.0117936 0.0204271i
\(956\) 47.8473 82.8739i 1.54749 2.68033i
\(957\) 0 0
\(958\) 60.6348 67.3417i 1.95902 2.17571i
\(959\) 4.34583 13.3751i 0.140334 0.431904i
\(960\) 0 0
\(961\) 14.1404 27.5871i 0.456143 0.889907i
\(962\) 76.4790 2.46578
\(963\) 0 0
\(964\) −63.6766 + 70.7201i −2.05089 + 2.27774i
\(965\) 6.26392 + 4.55100i 0.201643 + 0.146502i
\(966\) 0 0
\(967\) −14.1988 24.5930i −0.456602 0.790858i 0.542177 0.840264i \(-0.317600\pi\)
−0.998779 + 0.0494066i \(0.984267\pi\)
\(968\) 8.38438 79.7720i 0.269484 2.56397i
\(969\) 0 0
\(970\) −0.218837 2.08209i −0.00702642 0.0668519i
\(971\) 14.8059 + 16.4436i 0.475144 + 0.527701i 0.932300 0.361686i \(-0.117799\pi\)
−0.457156 + 0.889386i \(0.651132\pi\)
\(972\) 0 0
\(973\) −2.28602 + 0.485909i −0.0732865 + 0.0155775i
\(974\) 54.4080 + 11.5648i 1.74334 + 0.370559i
\(975\) 0 0
\(976\) −20.4703 63.0012i −0.655240 2.01662i
\(977\) 6.15324 + 18.9377i 0.196859 + 0.605871i 0.999950 + 0.0100140i \(0.00318759\pi\)
−0.803090 + 0.595857i \(0.796812\pi\)
\(978\) 0 0
\(979\) −20.0362 4.25884i −0.640361 0.136113i
\(980\) −12.5215 + 2.66153i −0.399985 + 0.0850195i
\(981\) 0 0
\(982\) −44.5206 49.4451i −1.42071 1.57786i
\(983\) −2.60593 24.7938i −0.0831164 0.790800i −0.954100 0.299488i \(-0.903184\pi\)
0.870984 0.491312i \(-0.163482\pi\)
\(984\) 0 0
\(985\) 0.188783 1.79615i 0.00601513 0.0572302i
\(986\) −30.2160 52.3356i −0.962273 1.66671i
\(987\) 0 0
\(988\) 39.9319 + 29.0122i 1.27040 + 0.923002i
\(989\) −1.08420 + 1.20413i −0.0344757 + 0.0382891i
\(990\) 0 0
\(991\) −42.0512 −1.33580 −0.667900 0.744251i \(-0.732807\pi\)
−0.667900 + 0.744251i \(0.732807\pi\)
\(992\) 82.7885 50.5953i 2.62854 1.60640i
\(993\) 0 0
\(994\) 6.83142 21.0249i 0.216679 0.666871i
\(995\) 5.36707 5.96074i 0.170148 0.188968i
\(996\) 0 0
\(997\) −7.23233 + 12.5268i −0.229050 + 0.396727i −0.957527 0.288344i \(-0.906895\pi\)
0.728477 + 0.685071i \(0.240229\pi\)
\(998\) 33.0353 + 57.2189i 1.04572 + 1.81123i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.2.y.c.262.2 16
3.2 odd 2 31.2.g.a.14.1 16
12.11 even 2 496.2.bg.c.417.1 16
15.2 even 4 775.2.ck.a.324.1 32
15.8 even 4 775.2.ck.a.324.4 32
15.14 odd 2 775.2.bl.a.76.2 16
31.12 odd 30 8649.2.a.be.1.8 8
31.19 even 15 8649.2.a.bf.1.8 8
31.20 even 15 inner 279.2.y.c.82.2 16
93.2 odd 10 961.2.c.j.521.1 16
93.5 odd 6 961.2.g.k.846.1 16
93.8 odd 10 961.2.g.t.338.2 16
93.11 even 30 961.2.g.l.547.1 16
93.14 odd 30 961.2.d.p.388.4 16
93.17 even 30 961.2.d.q.388.4 16
93.20 odd 30 31.2.g.a.20.1 yes 16
93.23 even 10 961.2.g.n.338.2 16
93.26 even 6 961.2.g.j.846.1 16
93.29 even 10 961.2.c.i.521.1 16
93.35 odd 10 961.2.g.k.844.1 16
93.38 odd 30 961.2.d.o.531.1 16
93.41 odd 30 961.2.c.j.439.1 16
93.44 even 30 961.2.g.n.816.2 16
93.47 odd 10 961.2.g.s.732.2 16
93.50 odd 30 961.2.a.i.1.1 8
93.53 even 30 961.2.g.m.235.2 16
93.56 odd 6 961.2.d.o.628.1 16
93.59 odd 30 961.2.d.p.374.4 16
93.65 even 30 961.2.d.q.374.4 16
93.68 even 6 961.2.d.n.628.1 16
93.71 odd 30 961.2.g.s.235.2 16
93.74 even 30 961.2.a.j.1.1 8
93.77 even 10 961.2.g.m.732.2 16
93.80 odd 30 961.2.g.t.816.2 16
93.83 even 30 961.2.c.i.439.1 16
93.86 even 30 961.2.d.n.531.1 16
93.89 even 10 961.2.g.j.844.1 16
93.92 even 2 961.2.g.l.448.1 16
372.299 even 30 496.2.bg.c.113.1 16
465.113 even 60 775.2.ck.a.299.1 32
465.299 odd 30 775.2.bl.a.51.2 16
465.392 even 60 775.2.ck.a.299.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 3.2 odd 2
31.2.g.a.20.1 yes 16 93.20 odd 30
279.2.y.c.82.2 16 31.20 even 15 inner
279.2.y.c.262.2 16 1.1 even 1 trivial
496.2.bg.c.113.1 16 372.299 even 30
496.2.bg.c.417.1 16 12.11 even 2
775.2.bl.a.51.2 16 465.299 odd 30
775.2.bl.a.76.2 16 15.14 odd 2
775.2.ck.a.299.1 32 465.113 even 60
775.2.ck.a.299.4 32 465.392 even 60
775.2.ck.a.324.1 32 15.2 even 4
775.2.ck.a.324.4 32 15.8 even 4
961.2.a.i.1.1 8 93.50 odd 30
961.2.a.j.1.1 8 93.74 even 30
961.2.c.i.439.1 16 93.83 even 30
961.2.c.i.521.1 16 93.29 even 10
961.2.c.j.439.1 16 93.41 odd 30
961.2.c.j.521.1 16 93.2 odd 10
961.2.d.n.531.1 16 93.86 even 30
961.2.d.n.628.1 16 93.68 even 6
961.2.d.o.531.1 16 93.38 odd 30
961.2.d.o.628.1 16 93.56 odd 6
961.2.d.p.374.4 16 93.59 odd 30
961.2.d.p.388.4 16 93.14 odd 30
961.2.d.q.374.4 16 93.65 even 30
961.2.d.q.388.4 16 93.17 even 30
961.2.g.j.844.1 16 93.89 even 10
961.2.g.j.846.1 16 93.26 even 6
961.2.g.k.844.1 16 93.35 odd 10
961.2.g.k.846.1 16 93.5 odd 6
961.2.g.l.448.1 16 93.92 even 2
961.2.g.l.547.1 16 93.11 even 30
961.2.g.m.235.2 16 93.53 even 30
961.2.g.m.732.2 16 93.77 even 10
961.2.g.n.338.2 16 93.23 even 10
961.2.g.n.816.2 16 93.44 even 30
961.2.g.s.235.2 16 93.71 odd 30
961.2.g.s.732.2 16 93.47 odd 10
961.2.g.t.338.2 16 93.8 odd 10
961.2.g.t.816.2 16 93.80 odd 30
8649.2.a.be.1.8 8 31.12 odd 30
8649.2.a.bf.1.8 8 31.19 even 15