L(s) = 1 | + 2·16-s − 12·61-s + 81-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯ |
L(s) = 1 | + 2·16-s − 12·61-s + 81-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3406615068\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3406615068\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T^{4} + T^{8} \) |
| 5 | \( 1 \) |
| 7 | \( 1 - T^{4} + T^{8} \) |
good | 2 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 11 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 13 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 17 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 19 | \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 23 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 29 | \( ( 1 + T^{2} )^{8} \) |
| 31 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 37 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 41 | \( ( 1 + T^{2} )^{8} \) |
| 43 | \( ( 1 + T^{4} )^{4} \) |
| 47 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 53 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 61 | \( ( 1 + T )^{8}( 1 + T + T^{2} )^{4} \) |
| 67 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 71 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 73 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 79 | \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 83 | \( ( 1 + T^{4} )^{4} \) |
| 89 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 97 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.14959005626572939246939861449, −4.71787999659229431119451120672, −4.71368681971134051877329674142, −4.50364774584328870421161627358, −4.50189451263717730946963683119, −4.42602831652703613530353595059, −4.37837114333564791038553300389, −4.07759666830518613715473251466, −3.91490788644184588606427867294, −3.72425329598832982644511654373, −3.34047050755471509032231667467, −3.31966094801932222018327337308, −3.28412892766438771131336611196, −3.28069687518321590505497826757, −3.16921841480485411844525611973, −2.69936208651861485005943151331, −2.68599220391535101980008274751, −2.58214667023386001339226008871, −2.36390133880571560857729700542, −1.93422821101657829483960274435, −1.75017213250817479610146388580, −1.55080816345337616069209461415, −1.48726815656126762725697522187, −1.34065392843507600280010637163, −0.957285847337279441362749789493,
0.957285847337279441362749789493, 1.34065392843507600280010637163, 1.48726815656126762725697522187, 1.55080816345337616069209461415, 1.75017213250817479610146388580, 1.93422821101657829483960274435, 2.36390133880571560857729700542, 2.58214667023386001339226008871, 2.68599220391535101980008274751, 2.69936208651861485005943151331, 3.16921841480485411844525611973, 3.28069687518321590505497826757, 3.28412892766438771131336611196, 3.31966094801932222018327337308, 3.34047050755471509032231667467, 3.72425329598832982644511654373, 3.91490788644184588606427867294, 4.07759666830518613715473251466, 4.37837114333564791038553300389, 4.42602831652703613530353595059, 4.50189451263717730946963683119, 4.50364774584328870421161627358, 4.71368681971134051877329674142, 4.71787999659229431119451120672, 5.14959005626572939246939861449
Plot not available for L-functions of degree greater than 10.