Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [525,1,Mod(68,525)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(525, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 9, 10]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("525.68");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 525.be (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 6.0.472696875.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68.1 |
|
0 | −0.965926 | − | 0.258819i | −0.866025 | + | 0.500000i | 0 | 0 | 0.258819 | − | 0.965926i | 0 | 0.866025 | + | 0.500000i | 0 | ||||||||||||||||||||||||||||||||||
68.2 | 0 | 0.965926 | + | 0.258819i | −0.866025 | + | 0.500000i | 0 | 0 | −0.258819 | + | 0.965926i | 0 | 0.866025 | + | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
143.1 | 0 | −0.258819 | − | 0.965926i | 0.866025 | + | 0.500000i | 0 | 0 | 0.965926 | − | 0.258819i | 0 | −0.866025 | + | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
143.2 | 0 | 0.258819 | + | 0.965926i | 0.866025 | + | 0.500000i | 0 | 0 | −0.965926 | + | 0.258819i | 0 | −0.866025 | + | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
257.1 | 0 | −0.258819 | + | 0.965926i | 0.866025 | − | 0.500000i | 0 | 0 | 0.965926 | + | 0.258819i | 0 | −0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
257.2 | 0 | 0.258819 | − | 0.965926i | 0.866025 | − | 0.500000i | 0 | 0 | −0.965926 | − | 0.258819i | 0 | −0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
332.1 | 0 | −0.965926 | + | 0.258819i | −0.866025 | − | 0.500000i | 0 | 0 | 0.258819 | + | 0.965926i | 0 | 0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
332.2 | 0 | 0.965926 | − | 0.258819i | −0.866025 | − | 0.500000i | 0 | 0 | −0.258819 | − | 0.965926i | 0 | 0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
15.e | even | 4 | 2 | inner |
21.g | even | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
35.k | even | 12 | 2 | inner |
105.p | even | 6 | 1 | inner |
105.w | odd | 12 | 2 | inner |
Twists
Hecke kernels
This newform subspace is the entire newspace .