Properties

Label 525.1.be.a
Level 525525
Weight 11
Character orbit 525.be
Analytic conductor 0.2620.262
Analytic rank 00
Dimension 88
Projective image D6D_{6}
CM discriminant -3
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,1,Mod(68,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.68");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 525.be (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2620091316320.262009131632
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.472696875.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ245q3+ζ242q4ζ2411q7+ζ2410q9ζ247q12+ζ249q13+ζ244q16+(ζ246ζ242)q19+ζ243q97+O(q100) q - \zeta_{24}^{5} q^{3} + \zeta_{24}^{2} q^{4} - \zeta_{24}^{11} q^{7} + \zeta_{24}^{10} q^{9} - \zeta_{24}^{7} q^{12} + \zeta_{24}^{9} q^{13} + \zeta_{24}^{4} q^{16} + ( - \zeta_{24}^{6} - \zeta_{24}^{2}) q^{19} + \cdots - \zeta_{24}^{3} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q164q218q3612q61+4q814q91+O(q100) 8 q + 4 q^{16} - 4 q^{21} - 8 q^{36} - 12 q^{61} + 4 q^{81} - 4 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/525Z)×\left(\mathbb{Z}/525\mathbb{Z}\right)^\times.

nn 127127 176176 451451
χ(n)\chi(n) ζ246-\zeta_{24}^{6} 1-1 ζ244\zeta_{24}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
68.1
0.258819 + 0.965926i
−0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
0 −0.965926 0.258819i −0.866025 + 0.500000i 0 0 0.258819 0.965926i 0 0.866025 + 0.500000i 0
68.2 0 0.965926 + 0.258819i −0.866025 + 0.500000i 0 0 −0.258819 + 0.965926i 0 0.866025 + 0.500000i 0
143.1 0 −0.258819 0.965926i 0.866025 + 0.500000i 0 0 0.965926 0.258819i 0 −0.866025 + 0.500000i 0
143.2 0 0.258819 + 0.965926i 0.866025 + 0.500000i 0 0 −0.965926 + 0.258819i 0 −0.866025 + 0.500000i 0
257.1 0 −0.258819 + 0.965926i 0.866025 0.500000i 0 0 0.965926 + 0.258819i 0 −0.866025 0.500000i 0
257.2 0 0.258819 0.965926i 0.866025 0.500000i 0 0 −0.965926 0.258819i 0 −0.866025 0.500000i 0
332.1 0 −0.965926 + 0.258819i −0.866025 0.500000i 0 0 0.258819 + 0.965926i 0 0.866025 0.500000i 0
332.2 0 0.965926 0.258819i −0.866025 0.500000i 0 0 −0.258819 0.965926i 0 0.866025 0.500000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 68.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
5.b even 2 1 inner
5.c odd 4 2 inner
7.d odd 6 1 inner
15.d odd 2 1 inner
15.e even 4 2 inner
21.g even 6 1 inner
35.i odd 6 1 inner
35.k even 12 2 inner
105.p even 6 1 inner
105.w odd 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.1.be.a 8
3.b odd 2 1 CM 525.1.be.a 8
5.b even 2 1 inner 525.1.be.a 8
5.c odd 4 2 inner 525.1.be.a 8
7.b odd 2 1 3675.1.bf.b 8
7.c even 3 1 3675.1.k.b 8
7.c even 3 1 3675.1.bf.b 8
7.d odd 6 1 inner 525.1.be.a 8
7.d odd 6 1 3675.1.k.b 8
15.d odd 2 1 inner 525.1.be.a 8
15.e even 4 2 inner 525.1.be.a 8
21.c even 2 1 3675.1.bf.b 8
21.g even 6 1 inner 525.1.be.a 8
21.g even 6 1 3675.1.k.b 8
21.h odd 6 1 3675.1.k.b 8
21.h odd 6 1 3675.1.bf.b 8
35.c odd 2 1 3675.1.bf.b 8
35.f even 4 2 3675.1.bf.b 8
35.i odd 6 1 inner 525.1.be.a 8
35.i odd 6 1 3675.1.k.b 8
35.j even 6 1 3675.1.k.b 8
35.j even 6 1 3675.1.bf.b 8
35.k even 12 2 inner 525.1.be.a 8
35.k even 12 2 3675.1.k.b 8
35.l odd 12 2 3675.1.k.b 8
35.l odd 12 2 3675.1.bf.b 8
105.g even 2 1 3675.1.bf.b 8
105.k odd 4 2 3675.1.bf.b 8
105.o odd 6 1 3675.1.k.b 8
105.o odd 6 1 3675.1.bf.b 8
105.p even 6 1 inner 525.1.be.a 8
105.p even 6 1 3675.1.k.b 8
105.w odd 12 2 inner 525.1.be.a 8
105.w odd 12 2 3675.1.k.b 8
105.x even 12 2 3675.1.k.b 8
105.x even 12 2 3675.1.bf.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.1.be.a 8 1.a even 1 1 trivial
525.1.be.a 8 3.b odd 2 1 CM
525.1.be.a 8 5.b even 2 1 inner
525.1.be.a 8 5.c odd 4 2 inner
525.1.be.a 8 7.d odd 6 1 inner
525.1.be.a 8 15.d odd 2 1 inner
525.1.be.a 8 15.e even 4 2 inner
525.1.be.a 8 21.g even 6 1 inner
525.1.be.a 8 35.i odd 6 1 inner
525.1.be.a 8 35.k even 12 2 inner
525.1.be.a 8 105.p even 6 1 inner
525.1.be.a 8 105.w odd 12 2 inner
3675.1.k.b 8 7.c even 3 1
3675.1.k.b 8 7.d odd 6 1
3675.1.k.b 8 21.g even 6 1
3675.1.k.b 8 21.h odd 6 1
3675.1.k.b 8 35.i odd 6 1
3675.1.k.b 8 35.j even 6 1
3675.1.k.b 8 35.k even 12 2
3675.1.k.b 8 35.l odd 12 2
3675.1.k.b 8 105.o odd 6 1
3675.1.k.b 8 105.p even 6 1
3675.1.k.b 8 105.w odd 12 2
3675.1.k.b 8 105.x even 12 2
3675.1.bf.b 8 7.b odd 2 1
3675.1.bf.b 8 7.c even 3 1
3675.1.bf.b 8 21.c even 2 1
3675.1.bf.b 8 21.h odd 6 1
3675.1.bf.b 8 35.c odd 2 1
3675.1.bf.b 8 35.f even 4 2
3675.1.bf.b 8 35.j even 6 1
3675.1.bf.b 8 35.l odd 12 2
3675.1.bf.b 8 105.g even 2 1
3675.1.bf.b 8 105.k odd 4 2
3675.1.bf.b 8 105.o odd 6 1
3675.1.bf.b 8 105.x even 12 2

Hecke kernels

This newform subspace is the entire newspace S1new(525,[χ])S_{1}^{\mathrm{new}}(525, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 (T4+3T2+9)2 (T^{4} + 3 T^{2} + 9)^{2} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T2+3T+3)4 (T^{2} + 3 T + 3)^{4} Copy content Toggle raw display
6767 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
7979 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
show more
show less