L(s) = 1 | + (−0.258 + 0.965i)3-s + (0.866 − 0.5i)4-s + (0.965 + 0.258i)7-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.707 − 0.707i)13-s + (0.499 − 0.866i)16-s + (−0.866 + 1.5i)19-s + (−0.499 + 0.866i)21-s + (0.707 − 0.707i)27-s + (0.965 − 0.258i)28-s − 36-s + (−1.67 + 0.448i)37-s + (0.866 − 0.500i)39-s + (0.707 + 0.707i)48-s + (0.866 + 0.499i)49-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)3-s + (0.866 − 0.5i)4-s + (0.965 + 0.258i)7-s + (−0.866 − 0.499i)9-s + (0.258 + 0.965i)12-s + (−0.707 − 0.707i)13-s + (0.499 − 0.866i)16-s + (−0.866 + 1.5i)19-s + (−0.499 + 0.866i)21-s + (0.707 − 0.707i)27-s + (0.965 − 0.258i)28-s − 36-s + (−1.67 + 0.448i)37-s + (0.866 − 0.500i)39-s + (0.707 + 0.707i)48-s + (0.866 + 0.499i)49-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.864−0.503i)Λ(1−s)
Λ(s)=(=(525s/2ΓC(s)L(s)(0.864−0.503i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.864−0.503i
|
Analytic conductor: |
0.262009 |
Root analytic conductor: |
0.511868 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :0), 0.864−0.503i)
|
Particular Values
L(21) |
≈ |
1.004759463 |
L(21) |
≈ |
1.004759463 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.258−0.965i)T |
| 5 | 1 |
| 7 | 1+(−0.965−0.258i)T |
good | 2 | 1+(−0.866+0.5i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.707+0.707i)T+iT2 |
| 17 | 1+(−0.866−0.5i)T2 |
| 19 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.866−0.5i)T2 |
| 29 | 1+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(1.67−0.448i)T+(0.866−0.5i)T2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1+(0.866−0.5i)T2 |
| 53 | 1+(−0.866−0.5i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 67 | 1+(−0.448+1.67i)T+(−0.866−0.5i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 79 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(0.707−0.707i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85265194667458318473597460308, −10.49853657569453420316314641092, −9.646041102116797199558271163784, −8.479199127412655074424145371704, −7.64476829139186849407586067741, −6.33016992215885247529100964567, −5.49874314575324618887090186657, −4.71787999659229431119451120672, −3.31966094801932222018327337308, −1.93422821101657829483960274435,
1.75017213250817479610146388580, 2.68599220391535101980008274751, 4.37837114333564791038553300389, 5.54458117085940507784996483608, 6.86617906086763478105011728454, 7.12622957452280402084405631376, 8.159727468546776311303523826892, 8.911157681126444530990841185717, 10.51636380611249884633618555736, 11.20850773412826818690495518803