L(s) = 1 | − 8·53-s − 8·73-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + 257-s + ⋯ |
L(s) = 1 | − 8·53-s − 8·73-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + 257-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3019897594\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3019897594\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( ( 1 + T^{4} )^{2} \) |
good | 3 | \( 1 + T^{16} \) |
| 5 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
| 7 | \( 1 + T^{16} \) |
| 11 | \( 1 + T^{16} \) |
| 13 | \( ( 1 + T^{8} )^{2} \) |
| 19 | \( ( 1 + T^{8} )^{2} \) |
| 23 | \( 1 + T^{16} \) |
| 29 | \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \) |
| 31 | \( 1 + T^{16} \) |
| 37 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
| 41 | \( ( 1 + T^{2} )^{4}( 1 + T^{8} ) \) |
| 43 | \( ( 1 + T^{8} )^{2} \) |
| 47 | \( ( 1 + T^{4} )^{4} \) |
| 53 | \( ( 1 + T )^{8}( 1 + T^{4} )^{2} \) |
| 59 | \( ( 1 + T^{8} )^{2} \) |
| 61 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
| 67 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 71 | \( 1 + T^{16} \) |
| 73 | \( ( 1 + T )^{8}( 1 + T^{8} ) \) |
| 79 | \( 1 + T^{16} \) |
| 83 | \( ( 1 + T^{8} )^{2} \) |
| 89 | \( ( 1 + T^{8} )^{2} \) |
| 97 | \( ( 1 + T^{4} )^{2}( 1 + T^{8} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.06239620894146776061362063078, −4.70096464958984022162231711454, −4.57808741067888645370820890259, −4.51072493771622239461044471722, −4.48998568235527809037970386754, −4.35858189279909206451949425978, −4.21763068288587480902041673157, −4.20370402316921004419460849613, −4.10520438691444965839565846077, −3.53372728561153302885629137637, −3.37381165218340105960357164541, −3.34465808366842047067278156145, −3.32720565535012117983580849806, −3.08755474479445968235233227101, −2.94817295402470425033788728748, −2.87912658523284310481614037251, −2.80737861633896188706736572081, −2.53941262515402623269061681640, −2.07373832743468992303578357588, −1.91911946694347466477349107245, −1.75012794395966607867260784287, −1.73852463777248832295259786461, −1.48812981451970089534642670616, −1.36128957131794691255204997358, −0.78114528332852071208586367621,
0.78114528332852071208586367621, 1.36128957131794691255204997358, 1.48812981451970089534642670616, 1.73852463777248832295259786461, 1.75012794395966607867260784287, 1.91911946694347466477349107245, 2.07373832743468992303578357588, 2.53941262515402623269061681640, 2.80737861633896188706736572081, 2.87912658523284310481614037251, 2.94817295402470425033788728748, 3.08755474479445968235233227101, 3.32720565535012117983580849806, 3.34465808366842047067278156145, 3.37381165218340105960357164541, 3.53372728561153302885629137637, 4.10520438691444965839565846077, 4.20370402316921004419460849613, 4.21763068288587480902041673157, 4.35858189279909206451949425978, 4.48998568235527809037970386754, 4.51072493771622239461044471722, 4.57808741067888645370820890259, 4.70096464958984022162231711454, 5.06239620894146776061362063078
Plot not available for L-functions of degree greater than 10.