L(s) = 1 | − 12·9-s + 20·25-s − 56·49-s + 90·81-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 56·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 240·225-s + 227-s + 229-s + ⋯ |
L(s) = 1 | − 4·9-s + 4·25-s − 8·49-s + 10·81-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s − 16·225-s + 0.0663·227-s + 0.0660·229-s + ⋯ |
Λ(s)=(=((248⋅38⋅58)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((248⋅38⋅58)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.1735499645 |
L(21) |
≈ |
0.1735499645 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+pT2)4 |
| 5 | (1−pT2)4 |
good | 7 | (1+pT2)8 |
| 11 | (1−2T2+p2T4)4 |
| 13 | (1+14T2+p2T4)4 |
| 17 | (1−26T2+p2T4)4 |
| 19 | (1+pT2)8 |
| 23 | (1+14T2+p2T4)4 |
| 29 | (1+38T2+p2T4)4 |
| 31 | (1−58T2+p2T4)4 |
| 37 | (1−34T2+p2T4)4 |
| 41 | (1−pT2)8 |
| 43 | (1−74T2+p2T4)4 |
| 47 | (1−34T2+p2T4)4 |
| 53 | (1−pT2)8 |
| 59 | (1−98T2+p2T4)4 |
| 61 | (1−pT2)8 |
| 67 | (1−26T2+p2T4)4 |
| 71 | (1+pT2)8 |
| 73 | (1−pT2)8 |
| 79 | (1+38T2+p2T4)4 |
| 83 | (1+pT2)8 |
| 89 | (1−pT2)8 |
| 97 | (1−pT2)8 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.48550660108274917741018141967, −4.36209133669922089419828175344, −3.86153309243992113464743401193, −3.74530959842003235850763108461, −3.60373583683361334787751366159, −3.59401384314558231938282281350, −3.54882392359838091800767831410, −3.30383803349316740622780350511, −3.09095662046688303152071536076, −3.08566290167545235081967977943, −2.90659460804496379766342987903, −2.88248998634005809457063568149, −2.80215764896064679445822353098, −2.63452261318683327804498077503, −2.25414915125911134041742348184, −2.18815287057687500052051311580, −2.15634412165681408961504156973, −1.97299800824828430034409551543, −1.55501838110925425058075047723, −1.29277513293041586433928372928, −1.28065355013966270050395778982, −1.20384066763146820477574700898, −0.59597037120211312759395947692, −0.46866808024713195643204059910, −0.07687759300264864242748861938,
0.07687759300264864242748861938, 0.46866808024713195643204059910, 0.59597037120211312759395947692, 1.20384066763146820477574700898, 1.28065355013966270050395778982, 1.29277513293041586433928372928, 1.55501838110925425058075047723, 1.97299800824828430034409551543, 2.15634412165681408961504156973, 2.18815287057687500052051311580, 2.25414915125911134041742348184, 2.63452261318683327804498077503, 2.80215764896064679445822353098, 2.88248998634005809457063568149, 2.90659460804496379766342987903, 3.08566290167545235081967977943, 3.09095662046688303152071536076, 3.30383803349316740622780350511, 3.54882392359838091800767831410, 3.59401384314558231938282281350, 3.60373583683361334787751366159, 3.74530959842003235850763108461, 3.86153309243992113464743401193, 4.36209133669922089419828175344, 4.48550660108274917741018141967
Plot not available for L-functions of degree greater than 10.