L(s) = 1 | + 24·7-s − 12·9-s − 192·23-s + 32·25-s + 144·41-s − 192·47-s + 16·49-s − 288·63-s + 90·81-s − 144·89-s + 72·103-s − 160·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 4.60e3·161-s + 163-s + 167-s − 992·169-s + 173-s + 768·175-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 24/7·7-s − 4/3·9-s − 8.34·23-s + 1.27·25-s + 3.51·41-s − 4.08·47-s + 0.326·49-s − 4.57·63-s + 10/9·81-s − 1.61·89-s + 0.699·103-s − 1.32·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s − 28.6·161-s + 0.00613·163-s + 0.00598·167-s − 5.86·169-s + 0.00578·173-s + 4.38·175-s + 0.00558·179-s + 0.00552·181-s + ⋯ |
Λ(s)=(=((248⋅38⋅58)s/2ΓC(s)8L(s)Λ(3−s)
Λ(s)=(=((248⋅38⋅58)s/2ΓC(s+1)8L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
1.375811073×10−6 |
L(21) |
≈ |
1.375811073×10−6 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+pT2)4 |
| 5 | 1−32T2+6p3T4−32p4T6+p8T8 |
good | 7 | (1−6T+86T2−6p2T3+p4T4)4 |
| 11 | (1+80T2+11982T4+80p4T6+p8T8)2 |
| 13 | (1+496T2+111822T4+496p4T6+p8T8)2 |
| 17 | (1−328T2+23838T4−328p4T6+p8T8)2 |
| 19 | (1+290T2+p4T4)4 |
| 23 | (1+24T+p2T2)8 |
| 29 | (1−2864T2+3458382T4−2864p4T6+p8T8)2 |
| 31 | (1−2300T2+3121158T4−2300p4T6+p8T8)2 |
| 37 | (1+4288T2+8283822T4+4288p4T6+p8T8)2 |
| 41 | (1−36T+662T2−36p2T3+p4T4)4 |
| 43 | (1−6676T2+17870982T4−6676p4T6+p8T8)2 |
| 47 | (1+48T+1970T2+48p2T3+p4T4)4 |
| 53 | (1+10384T2+42646350T4+10384p4T6+p8T8)2 |
| 59 | (1+8864T2+40876782T4+8864p4T6+p8T8)2 |
| 61 | (1+4124T2+16267110T4+4124p4T6+p8T8)2 |
| 67 | (1−8020T2+31887942T4−8020p4T6+p8T8)2 |
| 71 | (1−7058T2+p4T4)4 |
| 73 | (1−2212T2+45633414T4−2212p4T6+p8T8)2 |
| 79 | (1−2108T2−46835706T4−2108p4T6+p8T8)2 |
| 83 | (1−25876T2+261715782T4−25876p4T6+p8T8)2 |
| 89 | (1+36T+4070T2+36p2T3+p4T4)4 |
| 97 | (1−33364T2+455045286T4−33364p4T6+p8T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.02367968074451867109428157081, −3.95162827771210956064649499664, −3.82865652880731499502138909521, −3.78891033407257303656407164774, −3.72905091758465551486624786296, −3.56827416586262076375825351313, −3.18648588538343523863501252055, −3.01931943811137150042695005543, −2.93854790363214665690617301907, −2.88553649439195762688543387694, −2.66721798453498855840746549465, −2.41444603893640403015487627129, −2.30983469578774758710312866286, −2.15165743163643032651431336160, −2.08900617646631139884541928224, −1.84177829736740290860433733032, −1.70446541050821082343227499935, −1.67422211712869150076717936323, −1.46902788912707761144656256385, −1.32350056570763926160272140477, −1.23388916234391916951711098978, −0.846719092367898163319440922903, −0.48920124935623255096462357224, −0.05746125831491191508478487654, −0.00055848226386236437406287666,
0.00055848226386236437406287666, 0.05746125831491191508478487654, 0.48920124935623255096462357224, 0.846719092367898163319440922903, 1.23388916234391916951711098978, 1.32350056570763926160272140477, 1.46902788912707761144656256385, 1.67422211712869150076717936323, 1.70446541050821082343227499935, 1.84177829736740290860433733032, 2.08900617646631139884541928224, 2.15165743163643032651431336160, 2.30983469578774758710312866286, 2.41444603893640403015487627129, 2.66721798453498855840746549465, 2.88553649439195762688543387694, 2.93854790363214665690617301907, 3.01931943811137150042695005543, 3.18648588538343523863501252055, 3.56827416586262076375825351313, 3.72905091758465551486624786296, 3.78891033407257303656407164774, 3.82865652880731499502138909521, 3.95162827771210956064649499664, 4.02367968074451867109428157081
Plot not available for L-functions of degree greater than 10.