Properties

Label 16-960e8-1.1-c2e8-0-11
Degree 1616
Conductor 7.214×10237.214\times 10^{23}
Sign 11
Analytic cond. 2.19204×10112.19204\times 10^{11}
Root an. cond. 5.114495.11449
Motivic weight 22
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·9-s + 16·13-s − 16·17-s + 20·25-s + 96·29-s + 112·37-s + 112·41-s + 104·49-s − 224·53-s − 80·61-s + 272·73-s + 90·81-s − 48·89-s + 528·97-s + 416·101-s − 112·109-s − 176·113-s − 192·117-s + 104·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 192·153-s + 157-s + ⋯
L(s)  = 1  − 4/3·9-s + 1.23·13-s − 0.941·17-s + 4/5·25-s + 3.31·29-s + 3.02·37-s + 2.73·41-s + 2.12·49-s − 4.22·53-s − 1.31·61-s + 3.72·73-s + 10/9·81-s − 0.539·89-s + 5.44·97-s + 4.11·101-s − 1.02·109-s − 1.55·113-s − 1.64·117-s + 0.859·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 1.25·153-s + 0.00636·157-s + ⋯

Functional equation

Λ(s)=((2483858)s/2ΓC(s)8L(s)=(Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}
Λ(s)=((2483858)s/2ΓC(s+1)8L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1616
Conductor: 24838582^{48} \cdot 3^{8} \cdot 5^{8}
Sign: 11
Analytic conductor: 2.19204×10112.19204\times 10^{11}
Root analytic conductor: 5.114495.11449
Motivic weight: 22
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (16, 2483858, ( :[1]8), 1)(16,\ 2^{48} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : [1]^{8} ),\ 1 )

Particular Values

L(32)L(\frac{3}{2}) \approx 13.8563832513.85638325
L(12)L(\frac12) \approx 13.8563832513.85638325
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 (1+pT2)4 ( 1 + p T^{2} )^{4}
5 (1pT2)4 ( 1 - p T^{2} )^{4}
good7 1104T2+3804T461144T6+732230T861144p4T10+3804p8T12104p12T14+p16T16 1 - 104 T^{2} + 3804 T^{4} - 61144 T^{6} + 732230 T^{8} - 61144 p^{4} T^{10} + 3804 p^{8} T^{12} - 104 p^{12} T^{14} + p^{16} T^{16}
11 1104T2+25116T4+998312T6+87392006T8+998312p4T10+25116p8T12104p12T14+p16T16 1 - 104 T^{2} + 25116 T^{4} + 998312 T^{6} + 87392006 T^{8} + 998312 p^{4} T^{10} + 25116 p^{8} T^{12} - 104 p^{12} T^{14} + p^{16} T^{16}
13 (18T+396T24792T3+76550T44792p2T5+396p4T68p6T7+p8T8)2 ( 1 - 8 T + 396 T^{2} - 4792 T^{3} + 76550 T^{4} - 4792 p^{2} T^{5} + 396 p^{4} T^{6} - 8 p^{6} T^{7} + p^{8} T^{8} )^{2}
17 (1+8T84T23848T335290T43848p2T584p4T6+8p6T7+p8T8)2 ( 1 + 8 T - 84 T^{2} - 3848 T^{3} - 35290 T^{4} - 3848 p^{2} T^{5} - 84 p^{4} T^{6} + 8 p^{6} T^{7} + p^{8} T^{8} )^{2}
19 1200T2+273628T452427000T6+42482298118T852427000p4T10+273628p8T12200p12T14+p16T16 1 - 200 T^{2} + 273628 T^{4} - 52427000 T^{6} + 42482298118 T^{8} - 52427000 p^{4} T^{10} + 273628 p^{8} T^{12} - 200 p^{12} T^{14} + p^{16} T^{16}
23 11544T2+1318044T4803710264T6+443101191110T8803710264p4T10+1318044p8T121544p12T14+p16T16 1 - 1544 T^{2} + 1318044 T^{4} - 803710264 T^{6} + 443101191110 T^{8} - 803710264 p^{4} T^{10} + 1318044 p^{8} T^{12} - 1544 p^{12} T^{14} + p^{16} T^{16}
29 (124T+1646T224p2T3+p4T4)4 ( 1 - 24 T + 1646 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{4}
31 12824T2+6208540T48647788856T6+9849609291334T88647788856p4T10+6208540p8T122824p12T14+p16T16 1 - 2824 T^{2} + 6208540 T^{4} - 8647788856 T^{6} + 9849609291334 T^{8} - 8647788856 p^{4} T^{10} + 6208540 p^{8} T^{12} - 2824 p^{12} T^{14} + p^{16} T^{16}
37 (156T+3948T2157576T3+7918598T4157576p2T5+3948p4T656p6T7+p8T8)2 ( 1 - 56 T + 3948 T^{2} - 157576 T^{3} + 7918598 T^{4} - 157576 p^{2} T^{5} + 3948 p^{4} T^{6} - 56 p^{6} T^{7} + p^{8} T^{8} )^{2}
41 (156T+2556T274632T3+3542726T474632p2T5+2556p4T656p6T7+p8T8)2 ( 1 - 56 T + 2556 T^{2} - 74632 T^{3} + 3542726 T^{4} - 74632 p^{2} T^{5} + 2556 p^{4} T^{6} - 56 p^{6} T^{7} + p^{8} T^{8} )^{2}
43 110760T2+54445788T4171718842040T6+375491195821958T8171718842040p4T10+54445788p8T1210760p12T14+p16T16 1 - 10760 T^{2} + 54445788 T^{4} - 171718842040 T^{6} + 375491195821958 T^{8} - 171718842040 p^{4} T^{10} + 54445788 p^{8} T^{12} - 10760 p^{12} T^{14} + p^{16} T^{16}
47 110888T2+61255708T4225571130296T6+586057028916550T8225571130296p4T10+61255708p8T1210888p12T14+p16T16 1 - 10888 T^{2} + 61255708 T^{4} - 225571130296 T^{6} + 586057028916550 T^{8} - 225571130296 p^{4} T^{10} + 61255708 p^{8} T^{12} - 10888 p^{12} T^{14} + p^{16} T^{16}
53 (1+112T+13020T2+887312T3+57092774T4+887312p2T5+13020p4T6+112p6T7+p8T8)2 ( 1 + 112 T + 13020 T^{2} + 887312 T^{3} + 57092774 T^{4} + 887312 p^{2} T^{5} + 13020 p^{4} T^{6} + 112 p^{6} T^{7} + p^{8} T^{8} )^{2}
59 120456T2+200671260T41224887792344T6+1465211341814p2T81224887792344p4T10+200671260p8T1220456p12T14+p16T16 1 - 20456 T^{2} + 200671260 T^{4} - 1224887792344 T^{6} + 1465211341814 p^{2} T^{8} - 1224887792344 p^{4} T^{10} + 200671260 p^{8} T^{12} - 20456 p^{12} T^{14} + p^{16} T^{16}
61 (1+40T+11964T2+456920T3+61872806T4+456920p2T5+11964p4T6+40p6T7+p8T8)2 ( 1 + 40 T + 11964 T^{2} + 456920 T^{3} + 61872806 T^{4} + 456920 p^{2} T^{5} + 11964 p^{4} T^{6} + 40 p^{6} T^{7} + p^{8} T^{8} )^{2}
67 14744T2+570460T4+34360533704T613806137860346T8+34360533704p4T10+570460p8T124744p12T14+p16T16 1 - 4744 T^{2} + 570460 T^{4} + 34360533704 T^{6} - 13806137860346 T^{8} + 34360533704 p^{4} T^{10} + 570460 p^{8} T^{12} - 4744 p^{12} T^{14} + p^{16} T^{16}
71 119720T2+218875804T41700648520760T6+9880226933129926T81700648520760p4T10+218875804p8T1219720p12T14+p16T16 1 - 19720 T^{2} + 218875804 T^{4} - 1700648520760 T^{6} + 9880226933129926 T^{8} - 1700648520760 p^{4} T^{10} + 218875804 p^{8} T^{12} - 19720 p^{12} T^{14} + p^{16} T^{16}
73 (1136T+19228T21717816T3+139076998T41717816p2T5+19228p4T6136p6T7+p8T8)2 ( 1 - 136 T + 19228 T^{2} - 1717816 T^{3} + 139076998 T^{4} - 1717816 p^{2} T^{5} + 19228 p^{4} T^{6} - 136 p^{6} T^{7} + p^{8} T^{8} )^{2}
79 136104T2+626466076T46818196448568T6+50837338178201926T86818196448568p4T10+626466076p8T1236104p12T14+p16T16 1 - 36104 T^{2} + 626466076 T^{4} - 6818196448568 T^{6} + 50837338178201926 T^{8} - 6818196448568 p^{4} T^{10} + 626466076 p^{8} T^{12} - 36104 p^{12} T^{14} + p^{16} T^{16}
83 129320T2+467847004T44970634792760T6+39363161035770886T84970634792760p4T10+467847004p8T1229320p12T14+p16T16 1 - 29320 T^{2} + 467847004 T^{4} - 4970634792760 T^{6} + 39363161035770886 T^{8} - 4970634792760 p^{4} T^{10} + 467847004 p^{8} T^{12} - 29320 p^{12} T^{14} + p^{16} T^{16}
89 (1+24T+4060T2454104T310096506T4454104p2T5+4060p4T6+24p6T7+p8T8)2 ( 1 + 24 T + 4060 T^{2} - 454104 T^{3} - 10096506 T^{4} - 454104 p^{2} T^{5} + 4060 p^{4} T^{6} + 24 p^{6} T^{7} + p^{8} T^{8} )^{2}
97 (1132T+20102T2132p2T3+p4T4)4 ( 1 - 132 T + 20102 T^{2} - 132 p^{2} T^{3} + p^{4} T^{4} )^{4}
show more
show less
   L(s)=p j=116(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−4.20264690686788907540007041479, −3.88393883557736479365470427748, −3.84871819377706010112035865623, −3.54310821417531300301322100590, −3.45995151985215168926365174377, −3.43457630346128456465185052877, −3.27062668539582058117309358556, −3.15726306005533341460631365865, −2.98299728832251637369083801920, −2.89027555929545871450418741713, −2.58767143801005855265787935310, −2.49104460086305845519706580189, −2.48108494750059151968467693901, −2.22115707467574197607466549765, −2.17471782505371670969584439017, −2.16780680631642085178827553249, −1.70438684797098199428260008406, −1.47685674435094951760060751857, −1.37959989915866487133945443283, −1.04871616666934553544796421107, −0.937341432871829972309011356238, −0.815599122447077493222529804736, −0.68537660877571038723214623289, −0.43065757070828910208124036501, −0.26917009535345646624705867534, 0.26917009535345646624705867534, 0.43065757070828910208124036501, 0.68537660877571038723214623289, 0.815599122447077493222529804736, 0.937341432871829972309011356238, 1.04871616666934553544796421107, 1.37959989915866487133945443283, 1.47685674435094951760060751857, 1.70438684797098199428260008406, 2.16780680631642085178827553249, 2.17471782505371670969584439017, 2.22115707467574197607466549765, 2.48108494750059151968467693901, 2.49104460086305845519706580189, 2.58767143801005855265787935310, 2.89027555929545871450418741713, 2.98299728832251637369083801920, 3.15726306005533341460631365865, 3.27062668539582058117309358556, 3.43457630346128456465185052877, 3.45995151985215168926365174377, 3.54310821417531300301322100590, 3.84871819377706010112035865623, 3.88393883557736479365470427748, 4.20264690686788907540007041479

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.