Properties

Label 960.3.e.d.511.5
Level 960960
Weight 33
Character 960.511
Analytic conductor 26.15826.158
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Toggle raw display
Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(511,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.511");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 960.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158105378626.1581053786
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 214 2^{14}
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 511.5
Root 1.40126+0.809017i1.40126 + 0.809017i of defining polynomial
Character χ\chi == 960.511
Dual form 960.3.e.d.511.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.73205iq32.23607q5+4.45607iq73.00000q912.1543iq110.265796q133.87298iq15+8.82953q1728.7701iq197.71813q21+15.3177iq23+5.00000q255.19615iq27+25.4164q2921.4990iq31+21.0519q339.96407iq3532.9872q370.460373iq39+72.3161q41+13.1039iq43+6.70820q45+56.9909iq47+29.1435q49+15.2932iq51+17.6608q53+27.1779iq55+49.8312q5728.4094iq59+22.2444q6113.3682iq63+0.594339q6551.3161iq6726.5311q69+49.9422iq71+128.973q73+8.66025iq75+54.1606q7788.6084iq79+9.00000q81+43.3955iq8319.7434q85+44.0225iq87148.097q891.18441iq91+37.2374q93+64.3318iq95+121.426q97+36.4630iq99+O(q100)q+1.73205i q^{3} -2.23607 q^{5} +4.45607i q^{7} -3.00000 q^{9} -12.1543i q^{11} -0.265796 q^{13} -3.87298i q^{15} +8.82953 q^{17} -28.7701i q^{19} -7.71813 q^{21} +15.3177i q^{23} +5.00000 q^{25} -5.19615i q^{27} +25.4164 q^{29} -21.4990i q^{31} +21.0519 q^{33} -9.96407i q^{35} -32.9872 q^{37} -0.460373i q^{39} +72.3161 q^{41} +13.1039i q^{43} +6.70820 q^{45} +56.9909i q^{47} +29.1435 q^{49} +15.2932i q^{51} +17.6608 q^{53} +27.1779i q^{55} +49.8312 q^{57} -28.4094i q^{59} +22.2444 q^{61} -13.3682i q^{63} +0.594339 q^{65} -51.3161i q^{67} -26.5311 q^{69} +49.9422i q^{71} +128.973 q^{73} +8.66025i q^{75} +54.1606 q^{77} -88.6084i q^{79} +9.00000 q^{81} +43.3955i q^{83} -19.7434 q^{85} +44.0225i q^{87} -148.097 q^{89} -1.18441i q^{91} +37.2374 q^{93} +64.3318i q^{95} +121.426 q^{97} +36.4630i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q24q9+16q1316q1796q21+40q25+96q29+48q33+112q37+112q41184q49224q53144q5780q61160q65+144q69+272q73++528q97+O(q100) 8 q - 24 q^{9} + 16 q^{13} - 16 q^{17} - 96 q^{21} + 40 q^{25} + 96 q^{29} + 48 q^{33} + 112 q^{37} + 112 q^{41} - 184 q^{49} - 224 q^{53} - 144 q^{57} - 80 q^{61} - 160 q^{65} + 144 q^{69} + 272 q^{73}+ \cdots + 528 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 11 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.73205i 0.577350i
44 0 0
55 −2.23607 −0.447214
66 0 0
77 4.45607i 0.636581i 0.947993 + 0.318291i 0.103109π0.103109\pi
−0.947993 + 0.318291i 0.896891π0.896891\pi
88 0 0
99 −3.00000 −0.333333
1010 0 0
1111 − 12.1543i − 1.10494i −0.833533 0.552470i 0.813685π-0.813685\pi
0.833533 0.552470i 0.186315π-0.186315\pi
1212 0 0
1313 −0.265796 −0.0204459 −0.0102229 0.999948i 0.503254π-0.503254\pi
−0.0102229 + 0.999948i 0.503254π0.503254\pi
1414 0 0
1515 − 3.87298i − 0.258199i
1616 0 0
1717 8.82953 0.519384 0.259692 0.965692i 0.416379π-0.416379\pi
0.259692 + 0.965692i 0.416379π0.416379\pi
1818 0 0
1919 − 28.7701i − 1.51421i −0.653291 0.757107i 0.726612π-0.726612\pi
0.653291 0.757107i 0.273388π-0.273388\pi
2020 0 0
2121 −7.71813 −0.367530
2222 0 0
2323 15.3177i 0.665988i 0.942929 + 0.332994i 0.108059π0.108059\pi
−0.942929 + 0.332994i 0.891941π0.891941\pi
2424 0 0
2525 5.00000 0.200000
2626 0 0
2727 − 5.19615i − 0.192450i
2828 0 0
2929 25.4164 0.876428 0.438214 0.898871i 0.355611π-0.355611\pi
0.438214 + 0.898871i 0.355611π0.355611\pi
3030 0 0
3131 − 21.4990i − 0.693517i −0.937955 0.346758i 0.887282π-0.887282\pi
0.937955 0.346758i 0.112718π-0.112718\pi
3232 0 0
3333 21.0519 0.637937
3434 0 0
3535 − 9.96407i − 0.284688i
3636 0 0
3737 −32.9872 −0.891545 −0.445772 0.895146i 0.647071π-0.647071\pi
−0.445772 + 0.895146i 0.647071π0.647071\pi
3838 0 0
3939 − 0.460373i − 0.0118044i
4040 0 0
4141 72.3161 1.76381 0.881904 0.471429i 0.156262π-0.156262\pi
0.881904 + 0.471429i 0.156262π0.156262\pi
4242 0 0
4343 13.1039i 0.304743i 0.988323 + 0.152371i 0.0486910π0.0486910\pi
−0.988323 + 0.152371i 0.951309π0.951309\pi
4444 0 0
4545 6.70820 0.149071
4646 0 0
4747 56.9909i 1.21257i 0.795246 + 0.606287i 0.207342π0.207342\pi
−0.795246 + 0.606287i 0.792658π0.792658\pi
4848 0 0
4949 29.1435 0.594765
5050 0 0
5151 15.2932i 0.299866i
5252 0 0
5353 17.6608 0.333223 0.166611 0.986023i 0.446717π-0.446717\pi
0.166611 + 0.986023i 0.446717π0.446717\pi
5454 0 0
5555 27.1779i 0.494144i
5656 0 0
5757 49.8312 0.874232
5858 0 0
5959 − 28.4094i − 0.481515i −0.970585 0.240758i 0.922604π-0.922604\pi
0.970585 0.240758i 0.0773959π-0.0773959\pi
6060 0 0
6161 22.2444 0.364662 0.182331 0.983237i 0.441636π-0.441636\pi
0.182331 + 0.983237i 0.441636π0.441636\pi
6262 0 0
6363 − 13.3682i − 0.212194i
6464 0 0
6565 0.594339 0.00914367
6666 0 0
6767 − 51.3161i − 0.765912i −0.923767 0.382956i 0.874906π-0.874906\pi
0.923767 0.382956i 0.125094π-0.125094\pi
6868 0 0
6969 −26.5311 −0.384509
7070 0 0
7171 49.9422i 0.703411i 0.936111 + 0.351705i 0.114398π0.114398\pi
−0.936111 + 0.351705i 0.885602π0.885602\pi
7272 0 0
7373 128.973 1.76676 0.883378 0.468661i 0.155263π-0.155263\pi
0.883378 + 0.468661i 0.155263π0.155263\pi
7474 0 0
7575 8.66025i 0.115470i
7676 0 0
7777 54.1606 0.703384
7878 0 0
7979 − 88.6084i − 1.12162i −0.827943 0.560812i 0.810489π-0.810489\pi
0.827943 0.560812i 0.189511π-0.189511\pi
8080 0 0
8181 9.00000 0.111111
8282 0 0
8383 43.3955i 0.522838i 0.965225 + 0.261419i 0.0841904π0.0841904\pi
−0.965225 + 0.261419i 0.915810π0.915810\pi
8484 0 0
8585 −19.7434 −0.232276
8686 0 0
8787 44.0225i 0.506006i
8888 0 0
8989 −148.097 −1.66401 −0.832004 0.554769i 0.812807π-0.812807\pi
−0.832004 + 0.554769i 0.812807π0.812807\pi
9090 0 0
9191 − 1.18441i − 0.0130155i
9292 0 0
9393 37.2374 0.400402
9494 0 0
9595 64.3318i 0.677177i
9696 0 0
9797 121.426 1.25181 0.625905 0.779899i 0.284730π-0.284730\pi
0.625905 + 0.779899i 0.284730π0.284730\pi
9898 0 0
9999 36.4630i 0.368313i
100100 0 0
101101 155.858 1.54315 0.771574 0.636139i 0.219470π-0.219470\pi
0.771574 + 0.636139i 0.219470π0.219470\pi
102102 0 0
103103 − 29.2417i − 0.283900i −0.989874 0.141950i 0.954663π-0.954663\pi
0.989874 0.141950i 0.0453372π-0.0453372\pi
104104 0 0
105105 17.2583 0.164365
106106 0 0
107107 − 52.0592i − 0.486534i −0.969959 0.243267i 0.921781π-0.921781\pi
0.969959 0.243267i 0.0782192π-0.0782192\pi
108108 0 0
109109 146.593 1.34489 0.672443 0.740149i 0.265245π-0.265245\pi
0.672443 + 0.740149i 0.265245π0.265245\pi
110110 0 0
111111 − 57.1354i − 0.514734i
112112 0 0
113113 −74.5415 −0.659659 −0.329829 0.944041i 0.606991π-0.606991\pi
−0.329829 + 0.944041i 0.606991π0.606991\pi
114114 0 0
115115 − 34.2515i − 0.297839i
116116 0 0
117117 0.797389 0.00681529
118118 0 0
119119 39.3450i 0.330630i
120120 0 0
121121 −26.7280 −0.220892
122122 0 0
123123 125.255i 1.01834i
124124 0 0
125125 −11.1803 −0.0894427
126126 0 0
127127 − 142.991i − 1.12591i −0.826487 0.562955i 0.809664π-0.809664\pi
0.826487 0.562955i 0.190336π-0.190336\pi
128128 0 0
129129 −22.6967 −0.175943
130130 0 0
131131 − 71.2101i − 0.543588i −0.962355 0.271794i 0.912383π-0.912383\pi
0.962355 0.271794i 0.0876170π-0.0876170\pi
132132 0 0
133133 128.201 0.963920
134134 0 0
135135 11.6190i 0.0860663i
136136 0 0
137137 82.0860 0.599168 0.299584 0.954070i 0.403152π-0.403152\pi
0.299584 + 0.954070i 0.403152π0.403152\pi
138138 0 0
139139 218.408i 1.57128i 0.618684 + 0.785640i 0.287666π0.287666\pi
−0.618684 + 0.785640i 0.712334π0.712334\pi
140140 0 0
141141 −98.7112 −0.700080
142142 0 0
143143 3.23058i 0.0225915i
144144 0 0
145145 −56.8328 −0.391950
146146 0 0
147147 50.4780i 0.343387i
148148 0 0
149149 54.7913 0.367727 0.183864 0.982952i 0.441140π-0.441140\pi
0.183864 + 0.982952i 0.441140π0.441140\pi
150150 0 0
151151 − 159.042i − 1.05326i −0.850094 0.526631i 0.823455π-0.823455\pi
0.850094 0.526631i 0.176545π-0.176545\pi
152152 0 0
153153 −26.4886 −0.173128
154154 0 0
155155 48.0733i 0.310150i
156156 0 0
157157 −196.132 −1.24925 −0.624625 0.780925i 0.714748π-0.714748\pi
−0.624625 + 0.780925i 0.714748π0.714748\pi
158158 0 0
159159 30.5894i 0.192386i
160160 0 0
161161 −68.2568 −0.423956
162162 0 0
163163 9.14060i 0.0560773i 0.999607 + 0.0280387i 0.00892615π0.00892615\pi
−0.999607 + 0.0280387i 0.991074π0.991074\pi
164164 0 0
165165 −47.0736 −0.285294
166166 0 0
167167 255.845i 1.53201i 0.642835 + 0.766004i 0.277758π0.277758\pi
−0.642835 + 0.766004i 0.722242π0.722242\pi
168168 0 0
169169 −168.929 −0.999582
170170 0 0
171171 86.3102i 0.504738i
172172 0 0
173173 328.479 1.89872 0.949361 0.314187i 0.101732π-0.101732\pi
0.949361 + 0.314187i 0.101732π0.101732\pi
174174 0 0
175175 22.2803i 0.127316i
176176 0 0
177177 49.2065 0.278003
178178 0 0
179179 136.205i 0.760921i 0.924797 + 0.380461i 0.124235π0.124235\pi
−0.924797 + 0.380461i 0.875765π0.875765\pi
180180 0 0
181181 183.088 1.01153 0.505767 0.862670i 0.331209π-0.331209\pi
0.505767 + 0.862670i 0.331209π0.331209\pi
182182 0 0
183183 38.5284i 0.210538i
184184 0 0
185185 73.7615 0.398711
186186 0 0
187187 − 107.317i − 0.573888i
188188 0 0
189189 23.1544 0.122510
190190 0 0
191191 − 215.085i − 1.12610i −0.826424 0.563049i 0.809628π-0.809628\pi
0.826424 0.563049i 0.190372π-0.190372\pi
192192 0 0
193193 1.49648 0.00775378 0.00387689 0.999992i 0.498766π-0.498766\pi
0.00387689 + 0.999992i 0.498766π0.498766\pi
194194 0 0
195195 1.02943i 0.00527910i
196196 0 0
197197 −108.472 −0.550621 −0.275311 0.961355i 0.588781π-0.588781\pi
−0.275311 + 0.961355i 0.588781π0.588781\pi
198198 0 0
199199 − 244.087i − 1.22657i −0.789863 0.613283i 0.789849π-0.789849\pi
0.789863 0.613283i 0.210151π-0.210151\pi
200200 0 0
201201 88.8820 0.442199
202202 0 0
203203 113.257i 0.557917i
204204 0 0
205205 −161.704 −0.788799
206206 0 0
207207 − 45.9532i − 0.221996i
208208 0 0
209209 −349.681 −1.67312
210210 0 0
211211 − 347.613i − 1.64746i −0.566984 0.823729i 0.691890π-0.691890\pi
0.566984 0.823729i 0.308110π-0.308110\pi
212212 0 0
213213 −86.5024 −0.406114
214214 0 0
215215 − 29.3013i − 0.136285i
216216 0 0
217217 95.8011 0.441480
218218 0 0
219219 223.388i 1.02004i
220220 0 0
221221 −2.34686 −0.0106193
222222 0 0
223223 − 305.374i − 1.36939i −0.728830 0.684694i 0.759936π-0.759936\pi
0.728830 0.684694i 0.240064π-0.240064\pi
224224 0 0
225225 −15.0000 −0.0666667
226226 0 0
227227 − 404.300i − 1.78106i −0.454926 0.890529i 0.650334π-0.650334\pi
0.454926 0.890529i 0.349666π-0.349666\pi
228228 0 0
229229 −354.858 −1.54960 −0.774799 0.632208i 0.782149π-0.782149\pi
−0.774799 + 0.632208i 0.782149π0.782149\pi
230230 0 0
231231 93.8088i 0.406099i
232232 0 0
233233 111.633 0.479111 0.239556 0.970883i 0.422998π-0.422998\pi
0.239556 + 0.970883i 0.422998π0.422998\pi
234234 0 0
235235 − 127.436i − 0.542279i
236236 0 0
237237 153.474 0.647570
238238 0 0
239239 − 248.183i − 1.03842i −0.854646 0.519211i 0.826226π-0.826226\pi
0.854646 0.519211i 0.173774π-0.173774\pi
240240 0 0
241241 −13.4186 −0.0556788 −0.0278394 0.999612i 0.508863π-0.508863\pi
−0.0278394 + 0.999612i 0.508863π0.508863\pi
242242 0 0
243243 15.5885i 0.0641500i
244244 0 0
245245 −65.1668 −0.265987
246246 0 0
247247 7.64698i 0.0309594i
248248 0 0
249249 −75.1632 −0.301860
250250 0 0
251251 338.305i 1.34783i 0.738809 + 0.673915i 0.235389π0.235389\pi
−0.738809 + 0.673915i 0.764611π0.764611\pi
252252 0 0
253253 186.177 0.735877
254254 0 0
255255 − 34.1966i − 0.134104i
256256 0 0
257257 −122.247 −0.475671 −0.237836 0.971305i 0.576438π-0.576438\pi
−0.237836 + 0.971305i 0.576438π0.576438\pi
258258 0 0
259259 − 146.993i − 0.567540i
260260 0 0
261261 −76.2492 −0.292143
262262 0 0
263263 289.777i 1.10181i 0.834566 + 0.550907i 0.185718π0.185718\pi
−0.834566 + 0.550907i 0.814282π0.814282\pi
264264 0 0
265265 −39.4908 −0.149022
266266 0 0
267267 − 256.511i − 0.960716i
268268 0 0
269269 −245.321 −0.911974 −0.455987 0.889986i 0.650714π-0.650714\pi
−0.455987 + 0.889986i 0.650714π0.650714\pi
270270 0 0
271271 262.071i 0.967050i 0.875331 + 0.483525i 0.160644π0.160644\pi
−0.875331 + 0.483525i 0.839356π0.839356\pi
272272 0 0
273273 2.05145 0.00751448
274274 0 0
275275 − 60.7717i − 0.220988i
276276 0 0
277277 −100.002 −0.361018 −0.180509 0.983573i 0.557774π-0.557774\pi
−0.180509 + 0.983573i 0.557774π0.557774\pi
278278 0 0
279279 64.4970i 0.231172i
280280 0 0
281281 29.0676 0.103443 0.0517217 0.998662i 0.483529π-0.483529\pi
0.0517217 + 0.998662i 0.483529π0.483529\pi
282282 0 0
283283 63.6053i 0.224754i 0.993666 + 0.112377i 0.0358464π0.0358464\pi
−0.993666 + 0.112377i 0.964154π0.964154\pi
284284 0 0
285285 −111.426 −0.390968
286286 0 0
287287 322.246i 1.12281i
288288 0 0
289289 −211.039 −0.730240
290290 0 0
291291 210.315i 0.722733i
292292 0 0
293293 −8.96048 −0.0305819 −0.0152909 0.999883i 0.504867π-0.504867\pi
−0.0152909 + 0.999883i 0.504867π0.504867\pi
294294 0 0
295295 63.5253i 0.215340i
296296 0 0
297297 −63.1558 −0.212646
298298 0 0
299299 − 4.07140i − 0.0136167i
300300 0 0
301301 −58.3920 −0.193993
302302 0 0
303303 269.954i 0.890937i
304304 0 0
305305 −49.7400 −0.163082
306306 0 0
307307 − 347.678i − 1.13250i −0.824233 0.566250i 0.808394π-0.808394\pi
0.824233 0.566250i 0.191606π-0.191606\pi
308308 0 0
309309 50.6481 0.163910
310310 0 0
311311 192.789i 0.619901i 0.950753 + 0.309950i 0.100312π0.100312\pi
−0.950753 + 0.309950i 0.899688π0.899688\pi
312312 0 0
313313 −235.513 −0.752439 −0.376219 0.926531i 0.622776π-0.622776\pi
−0.376219 + 0.926531i 0.622776π0.622776\pi
314314 0 0
315315 29.8922i 0.0948959i
316316 0 0
317317 −546.577 −1.72422 −0.862109 0.506723i 0.830857π-0.830857\pi
−0.862109 + 0.506723i 0.830857π0.830857\pi
318318 0 0
319319 − 308.920i − 0.968400i
320320 0 0
321321 90.1692 0.280901
322322 0 0
323323 − 254.026i − 0.786458i
324324 0 0
325325 −1.32898 −0.00408918
326326 0 0
327327 253.906i 0.776470i
328328 0 0
329329 −253.956 −0.771901
330330 0 0
331331 − 244.297i − 0.738058i −0.929418 0.369029i 0.879690π-0.879690\pi
0.929418 0.369029i 0.120310π-0.120310\pi
332332 0 0
333333 98.9615 0.297182
334334 0 0
335335 114.746i 0.342526i
336336 0 0
337337 581.581 1.72576 0.862879 0.505410i 0.168659π-0.168659\pi
0.862879 + 0.505410i 0.168659π0.168659\pi
338338 0 0
339339 − 129.110i − 0.380854i
340340 0 0
341341 −261.306 −0.766294
342342 0 0
343343 348.213i 1.01520i
344344 0 0
345345 59.3253 0.171957
346346 0 0
347347 532.168i 1.53363i 0.641871 + 0.766813i 0.278159π0.278159\pi
−0.641871 + 0.766813i 0.721841π0.721841\pi
348348 0 0
349349 −636.743 −1.82448 −0.912239 0.409659i 0.865648π-0.865648\pi
−0.912239 + 0.409659i 0.865648π0.865648\pi
350350 0 0
351351 1.38112i 0.00393481i
352352 0 0
353353 350.211 0.992100 0.496050 0.868294i 0.334783π-0.334783\pi
0.496050 + 0.868294i 0.334783π0.334783\pi
354354 0 0
355355 − 111.674i − 0.314575i
356356 0 0
357357 −68.1475 −0.190889
358358 0 0
359359 76.6399i 0.213482i 0.994287 + 0.106741i 0.0340415π0.0340415\pi
−0.994287 + 0.106741i 0.965958π0.965958\pi
360360 0 0
361361 −466.717 −1.29284
362362 0 0
363363 − 46.2942i − 0.127532i
364364 0 0
365365 −288.393 −0.790118
366366 0 0
367367 − 410.325i − 1.11805i −0.829150 0.559026i 0.811175π-0.811175\pi
0.829150 0.559026i 0.188825π-0.188825\pi
368368 0 0
369369 −216.948 −0.587936
370370 0 0
371371 78.6978i 0.212123i
372372 0 0
373373 −56.1032 −0.150411 −0.0752053 0.997168i 0.523961π-0.523961\pi
−0.0752053 + 0.997168i 0.523961π0.523961\pi
374374 0 0
375375 − 19.3649i − 0.0516398i
376376 0 0
377377 −6.75559 −0.0179193
378378 0 0
379379 197.508i 0.521130i 0.965456 + 0.260565i 0.0839088π0.0839088\pi
−0.965456 + 0.260565i 0.916091π0.916091\pi
380380 0 0
381381 247.667 0.650045
382382 0 0
383383 − 388.780i − 1.01509i −0.861625 0.507546i 0.830553π-0.830553\pi
0.861625 0.507546i 0.169447π-0.169447\pi
384384 0 0
385385 −121.107 −0.314563
386386 0 0
387387 − 39.3118i − 0.101581i
388388 0 0
389389 −537.091 −1.38070 −0.690348 0.723477i 0.742543π-0.742543\pi
−0.690348 + 0.723477i 0.742543π0.742543\pi
390390 0 0
391391 135.248i 0.345904i
392392 0 0
393393 123.339 0.313841
394394 0 0
395395 198.134i 0.501606i
396396 0 0
397397 −536.944 −1.35250 −0.676252 0.736670i 0.736397π-0.736397\pi
−0.676252 + 0.736670i 0.736397π0.736397\pi
398398 0 0
399399 222.051i 0.556519i
400400 0 0
401401 658.617 1.64244 0.821218 0.570615i 0.193295π-0.193295\pi
0.821218 + 0.570615i 0.193295π0.193295\pi
402402 0 0
403403 5.71436i 0.0141796i
404404 0 0
405405 −20.1246 −0.0496904
406406 0 0
407407 400.937i 0.985103i
408408 0 0
409409 −695.505 −1.70050 −0.850251 0.526377i 0.823550π-0.823550\pi
−0.850251 + 0.526377i 0.823550π0.823550\pi
410410 0 0
411411 142.177i 0.345930i
412412 0 0
413413 126.594 0.306523
414414 0 0
415415 − 97.0353i − 0.233820i
416416 0 0
417417 −378.293 −0.907179
418418 0 0
419419 − 95.8396i − 0.228734i −0.993439 0.114367i 0.963516π-0.963516\pi
0.993439 0.114367i 0.0364840π-0.0364840\pi
420420 0 0
421421 601.155 1.42792 0.713961 0.700185i 0.246899π-0.246899\pi
0.713961 + 0.700185i 0.246899π0.246899\pi
422422 0 0
423423 − 170.973i − 0.404191i
424424 0 0
425425 44.1476 0.103877
426426 0 0
427427 99.1226i 0.232137i
428428 0 0
429429 −5.59553 −0.0130432
430430 0 0
431431 − 74.1664i − 0.172080i −0.996292 0.0860399i 0.972579π-0.972579\pi
0.996292 0.0860399i 0.0274213π-0.0274213\pi
432432 0 0
433433 436.312 1.00765 0.503824 0.863806i 0.331926π-0.331926\pi
0.503824 + 0.863806i 0.331926π0.331926\pi
434434 0 0
435435 − 98.4373i − 0.226293i
436436 0 0
437437 440.692 1.00845
438438 0 0
439439 416.602i 0.948979i 0.880261 + 0.474489i 0.157367π0.157367\pi
−0.880261 + 0.474489i 0.842633π0.842633\pi
440440 0 0
441441 −87.4304 −0.198255
442442 0 0
443443 283.661i 0.640319i 0.947364 + 0.320159i 0.103736π0.103736\pi
−0.947364 + 0.320159i 0.896264π0.896264\pi
444444 0 0
445445 331.154 0.744167
446446 0 0
447447 94.9014i 0.212307i
448448 0 0
449449 −81.2571 −0.180973 −0.0904867 0.995898i 0.528842π-0.528842\pi
−0.0904867 + 0.995898i 0.528842π0.528842\pi
450450 0 0
451451 − 878.955i − 1.94890i
452452 0 0
453453 275.470 0.608101
454454 0 0
455455 2.64841i 0.00582069i
456456 0 0
457457 386.747 0.846274 0.423137 0.906066i 0.360929π-0.360929\pi
0.423137 + 0.906066i 0.360929π0.360929\pi
458458 0 0
459459 − 45.8796i − 0.0999555i
460460 0 0
461461 −23.0382 −0.0499744 −0.0249872 0.999688i 0.507955π-0.507955\pi
−0.0249872 + 0.999688i 0.507955π0.507955\pi
462462 0 0
463463 − 606.274i − 1.30945i −0.755868 0.654724i 0.772785π-0.772785\pi
0.755868 0.654724i 0.227215π-0.227215\pi
464464 0 0
465465 −83.2653 −0.179065
466466 0 0
467467 816.731i 1.74889i 0.485125 + 0.874445i 0.338774π0.338774\pi
−0.485125 + 0.874445i 0.661226π0.661226\pi
468468 0 0
469469 228.668 0.487565
470470 0 0
471471 − 339.711i − 0.721255i
472472 0 0
473473 159.270 0.336722
474474 0 0
475475 − 143.850i − 0.302843i
476476 0 0
477477 −52.9824 −0.111074
478478 0 0
479479 − 528.270i − 1.10286i −0.834221 0.551430i 0.814082π-0.814082\pi
0.834221 0.551430i 0.185918π-0.185918\pi
480480 0 0
481481 8.76787 0.0182284
482482 0 0
483483 − 118.224i − 0.244771i
484484 0 0
485485 −271.516 −0.559827
486486 0 0
487487 57.5041i 0.118078i 0.998256 + 0.0590391i 0.0188037π0.0188037\pi
−0.998256 + 0.0590391i 0.981196π0.981196\pi
488488 0 0
489489 −15.8320 −0.0323762
490490 0 0
491491 466.970i 0.951058i 0.879700 + 0.475529i 0.157743π0.157743\pi
−0.879700 + 0.475529i 0.842257π0.842257\pi
492492 0 0
493493 224.415 0.455203
494494 0 0
495495 − 81.5338i − 0.164715i
496496 0 0
497497 −222.546 −0.447778
498498 0 0
499499 246.634i 0.494257i 0.968983 + 0.247129i 0.0794870π0.0794870\pi
−0.968983 + 0.247129i 0.920513π0.920513\pi
500500 0 0
501501 −443.137 −0.884506
502502 0 0
503503 − 569.336i − 1.13188i −0.824446 0.565940i 0.808513π-0.808513\pi
0.824446 0.565940i 0.191487π-0.191487\pi
504504 0 0
505505 −348.509 −0.690117
506506 0 0
507507 − 292.594i − 0.577109i
508508 0 0
509509 276.352 0.542931 0.271466 0.962448i 0.412492π-0.412492\pi
0.271466 + 0.962448i 0.412492π0.412492\pi
510510 0 0
511511 574.713i 1.12468i
512512 0 0
513513 −149.494 −0.291411
514514 0 0
515515 65.3864i 0.126964i
516516 0 0
517517 692.687 1.33982
518518 0 0
519519 568.942i 1.09623i
520520 0 0
521521 487.826 0.936326 0.468163 0.883642i 0.344916π-0.344916\pi
0.468163 + 0.883642i 0.344916π0.344916\pi
522522 0 0
523523 − 800.276i − 1.53016i −0.643933 0.765082i 0.722698π-0.722698\pi
0.643933 0.765082i 0.277302π-0.277302\pi
524524 0 0
525525 −38.5907 −0.0735060
526526 0 0
527527 − 189.826i − 0.360201i
528528 0 0
529529 294.367 0.556460
530530 0 0
531531 85.2282i 0.160505i
532532 0 0
533533 −19.2214 −0.0360626
534534 0 0
535535 116.408i 0.217585i
536536 0 0
537537 −235.914 −0.439318
538538 0 0
539539 − 354.220i − 0.657179i
540540 0 0
541541 667.426 1.23369 0.616845 0.787085i 0.288410π-0.288410\pi
0.616845 + 0.787085i 0.288410π0.288410\pi
542542 0 0
543543 317.117i 0.584010i
544544 0 0
545545 −327.791 −0.601451
546546 0 0
547547 674.633i 1.23333i 0.787224 + 0.616667i 0.211517π0.211517\pi
−0.787224 + 0.616667i 0.788483π0.788483\pi
548548 0 0
549549 −66.7332 −0.121554
550550 0 0
551551 − 731.232i − 1.32710i
552552 0 0
553553 394.845 0.714005
554554 0 0
555555 127.759i 0.230196i
556556 0 0
557557 861.502 1.54668 0.773341 0.633990i 0.218584π-0.218584\pi
0.773341 + 0.633990i 0.218584π0.218584\pi
558558 0 0
559559 − 3.48298i − 0.00623073i
560560 0 0
561561 185.879 0.331334
562562 0 0
563563 − 319.214i − 0.566987i −0.958974 0.283494i 0.908507π-0.908507\pi
0.958974 0.283494i 0.0914935π-0.0914935\pi
564564 0 0
565565 166.680 0.295008
566566 0 0
567567 40.1046i 0.0707312i
568568 0 0
569569 −116.908 −0.205463 −0.102731 0.994709i 0.532758π-0.532758\pi
−0.102731 + 0.994709i 0.532758π0.532758\pi
570570 0 0
571571 1104.69i 1.93467i 0.253508 + 0.967333i 0.418416π0.418416\pi
−0.253508 + 0.967333i 0.581584π0.581584\pi
572572 0 0
573573 372.537 0.650152
574574 0 0
575575 76.5887i 0.133198i
576576 0 0
577577 −802.968 −1.39163 −0.695813 0.718223i 0.744956π-0.744956\pi
−0.695813 + 0.718223i 0.744956π0.744956\pi
578578 0 0
579579 2.59198i 0.00447665i
580580 0 0
581581 −193.373 −0.332829
582582 0 0
583583 − 214.656i − 0.368191i
584584 0 0
585585 −1.78302 −0.00304789
586586 0 0
587587 − 164.619i − 0.280442i −0.990120 0.140221i 0.955219π-0.955219\pi
0.990120 0.140221i 0.0447813π-0.0447813\pi
588588 0 0
589589 −618.528 −1.05013
590590 0 0
591591 − 187.880i − 0.317901i
592592 0 0
593593 378.471 0.638231 0.319116 0.947716i 0.396614π-0.396614\pi
0.319116 + 0.947716i 0.396614π0.396614\pi
594594 0 0
595595 − 87.9780i − 0.147862i
596596 0 0
597597 422.770 0.708158
598598 0 0
599599 − 86.5006i − 0.144408i −0.997390 0.0722042i 0.976997π-0.976997\pi
0.997390 0.0722042i 0.0230033π-0.0230033\pi
600600 0 0
601601 −416.690 −0.693327 −0.346664 0.937990i 0.612685π-0.612685\pi
−0.346664 + 0.937990i 0.612685π0.612685\pi
602602 0 0
603603 153.948i 0.255304i
604604 0 0
605605 59.7656 0.0987861
606606 0 0
607607 − 1056.06i − 1.73980i −0.493226 0.869901i 0.664183π-0.664183\pi
0.493226 0.869901i 0.335817π-0.335817\pi
608608 0 0
609609 −196.167 −0.322114
610610 0 0
611611 − 15.1480i − 0.0247921i
612612 0 0
613613 1015.11 1.65596 0.827982 0.560754i 0.189489π-0.189489\pi
0.827982 + 0.560754i 0.189489π0.189489\pi
614614 0 0
615615 − 280.079i − 0.455413i
616616 0 0
617617 575.077 0.932053 0.466027 0.884771i 0.345685π-0.345685\pi
0.466027 + 0.884771i 0.345685π0.345685\pi
618618 0 0
619619 − 339.933i − 0.549165i −0.961564 0.274583i 0.911460π-0.911460\pi
0.961564 0.274583i 0.0885397π-0.0885397\pi
620620 0 0
621621 79.5933 0.128170
622622 0 0
623623 − 659.929i − 1.05928i
624624 0 0
625625 25.0000 0.0400000
626626 0 0
627627 − 605.666i − 0.965974i
628628 0 0
629629 −291.261 −0.463054
630630 0 0
631631 497.309i 0.788128i 0.919083 + 0.394064i 0.128931π0.128931\pi
−0.919083 + 0.394064i 0.871069π0.871069\pi
632632 0 0
633633 602.084 0.951160
634634 0 0
635635 319.737i 0.503522i
636636 0 0
637637 −7.74623 −0.0121605
638638 0 0
639639 − 149.827i − 0.234470i
640640 0 0
641641 17.7231 0.0276491 0.0138246 0.999904i 0.495599π-0.495599\pi
0.0138246 + 0.999904i 0.495599π0.495599\pi
642642 0 0
643643 551.144i 0.857145i 0.903507 + 0.428573i 0.140983π0.140983\pi
−0.903507 + 0.428573i 0.859017π0.859017\pi
644644 0 0
645645 50.7513 0.0786842
646646 0 0
647647 433.954i 0.670717i 0.942091 + 0.335358i 0.108857π0.108857\pi
−0.942091 + 0.335358i 0.891143π0.891143\pi
648648 0 0
649649 −345.297 −0.532045
650650 0 0
651651 165.932i 0.254888i
652652 0 0
653653 −49.9181 −0.0764443 −0.0382221 0.999269i 0.512169π-0.512169\pi
−0.0382221 + 0.999269i 0.512169π0.512169\pi
654654 0 0
655655 159.231i 0.243100i
656656 0 0
657657 −386.920 −0.588919
658658 0 0
659659 − 410.479i − 0.622882i −0.950266 0.311441i 0.899188π-0.899188\pi
0.950266 0.311441i 0.100812π-0.100812\pi
660660 0 0
661661 565.667 0.855774 0.427887 0.903832i 0.359258π-0.359258\pi
0.427887 + 0.903832i 0.359258π0.359258\pi
662662 0 0
663663 − 4.06487i − 0.00613103i
664664 0 0
665665 −286.667 −0.431078
666666 0 0
667667 389.322i 0.583691i
668668 0 0
669669 528.923 0.790617
670670 0 0
671671 − 270.366i − 0.402930i
672672 0 0
673673 853.392 1.26804 0.634021 0.773316i 0.281403π-0.281403\pi
0.634021 + 0.773316i 0.281403π0.281403\pi
674674 0 0
675675 − 25.9808i − 0.0384900i
676676 0 0
677677 570.348 0.842464 0.421232 0.906953i 0.361598π-0.361598\pi
0.421232 + 0.906953i 0.361598π0.361598\pi
678678 0 0
679679 541.081i 0.796879i
680680 0 0
681681 700.269 1.02829
682682 0 0
683683 − 138.032i − 0.202096i −0.994882 0.101048i 0.967780π-0.967780\pi
0.994882 0.101048i 0.0322196π-0.0322196\pi
684684 0 0
685685 −183.550 −0.267956
686686 0 0
687687 − 614.632i − 0.894661i
688688 0 0
689689 −4.69418 −0.00681303
690690 0 0
691691 − 200.350i − 0.289943i −0.989436 0.144971i 0.953691π-0.953691\pi
0.989436 0.144971i 0.0463090π-0.0463090\pi
692692 0 0
693693 −162.482 −0.234461
694694 0 0
695695 − 488.375i − 0.702698i
696696 0 0
697697 638.517 0.916094
698698 0 0
699699 193.354i 0.276615i
700700 0 0
701701 −148.485 −0.211819 −0.105909 0.994376i 0.533775π-0.533775\pi
−0.105909 + 0.994376i 0.533775π0.533775\pi
702702 0 0
703703 949.043i 1.34999i
704704 0 0
705705 220.725 0.313085
706706 0 0
707707 694.514i 0.982339i
708708 0 0
709709 −808.403 −1.14020 −0.570101 0.821575i 0.693096π-0.693096\pi
−0.570101 + 0.821575i 0.693096π0.693096\pi
710710 0 0
711711 265.825i 0.373875i
712712 0 0
713713 329.316 0.461874
714714 0 0
715715 − 7.22380i − 0.0101032i
716716 0 0
717717 429.865 0.599533
718718 0 0
719719 796.673i 1.10803i 0.832507 + 0.554015i 0.186905π0.186905\pi
−0.832507 + 0.554015i 0.813095π0.813095\pi
720720 0 0
721721 130.303 0.180725
722722 0 0
723723 − 23.2417i − 0.0321462i
724724 0 0
725725 127.082 0.175286
726726 0 0
727727 − 1059.29i − 1.45707i −0.685010 0.728534i 0.740202π-0.740202\pi
0.685010 0.728534i 0.259798π-0.259798\pi
728728 0 0
729729 −27.0000 −0.0370370
730730 0 0
731731 115.702i 0.158278i
732732 0 0
733733 −1145.22 −1.56237 −0.781187 0.624298i 0.785385π-0.785385\pi
−0.781187 + 0.624298i 0.785385π0.785385\pi
734734 0 0
735735 − 112.872i − 0.153568i
736736 0 0
737737 −623.713 −0.846286
738738 0 0
739739 155.577i 0.210523i 0.994445 + 0.105262i 0.0335680π0.0335680\pi
−0.994445 + 0.105262i 0.966432π0.966432\pi
740740 0 0
741741 −13.2450 −0.0178744
742742 0 0
743743 733.962i 0.987836i 0.869508 + 0.493918i 0.164436π0.164436\pi
−0.869508 + 0.493918i 0.835564π0.835564\pi
744744 0 0
745745 −122.517 −0.164453
746746 0 0
747747 − 130.187i − 0.174279i
748748 0 0
749749 231.979 0.309719
750750 0 0
751751 1032.25i 1.37450i 0.726423 + 0.687248i 0.241182π0.241182\pi
−0.726423 + 0.687248i 0.758818π0.758818\pi
752752 0 0
753753 −585.962 −0.778170
754754 0 0
755755 355.630i 0.471033i
756756 0 0
757757 70.8915 0.0936480 0.0468240 0.998903i 0.485090π-0.485090\pi
0.0468240 + 0.998903i 0.485090π0.485090\pi
758758 0 0
759759 322.468i 0.424859i
760760 0 0
761761 446.601 0.586861 0.293430 0.955980i 0.405203π-0.405203\pi
0.293430 + 0.955980i 0.405203π0.405203\pi
762762 0 0
763763 653.226i 0.856129i
764764 0 0
765765 59.2303 0.0774252
766766 0 0
767767 7.55111i 0.00984500i
768768 0 0
769769 1477.88 1.92183 0.960913 0.276850i 0.0892904π-0.0892904\pi
0.960913 + 0.276850i 0.0892904π0.0892904\pi
770770 0 0
771771 − 211.739i − 0.274629i
772772 0 0
773773 396.016 0.512310 0.256155 0.966636i 0.417544π-0.417544\pi
0.256155 + 0.966636i 0.417544π0.417544\pi
774774 0 0
775775 − 107.495i − 0.138703i
776776 0 0
777777 254.599 0.327670
778778 0 0
779779 − 2080.54i − 2.67078i
780780 0 0
781781 607.014 0.777227
782782 0 0
783783 − 132.068i − 0.168669i
784784 0 0
785785 438.565 0.558681
786786 0 0
787787 1221.57i 1.55219i 0.630616 + 0.776095i 0.282802π0.282802\pi
−0.630616 + 0.776095i 0.717198π0.717198\pi
788788 0 0
789789 −501.909 −0.636133
790790 0 0
791791 − 332.162i − 0.419926i
792792 0 0
793793 −5.91248 −0.00745584
794794 0 0
795795 − 68.4000i − 0.0860378i
796796 0 0
797797 430.044 0.539579 0.269789 0.962919i 0.413046π-0.413046\pi
0.269789 + 0.962919i 0.413046π0.413046\pi
798798 0 0
799799 503.203i 0.629791i
800800 0 0
801801 444.290 0.554669
802802 0 0
803803 − 1567.58i − 1.95216i
804804 0 0
805805 152.627 0.189599
806806 0 0
807807 − 424.908i − 0.526528i
808808 0 0
809809 980.456 1.21194 0.605968 0.795489i 0.292786π-0.292786\pi
0.605968 + 0.795489i 0.292786π0.292786\pi
810810 0 0
811811 − 712.890i − 0.879025i −0.898236 0.439513i 0.855151π-0.855151\pi
0.898236 0.439513i 0.144849π-0.144849\pi
812812 0 0
813813 −453.919 −0.558327
814814 0 0
815815 − 20.4390i − 0.0250785i
816816 0 0
817817 377.001 0.461446
818818 0 0
819819 3.55322i 0.00433849i
820820 0 0
821821 −644.594 −0.785133 −0.392566 0.919724i 0.628413π-0.628413\pi
−0.392566 + 0.919724i 0.628413π0.628413\pi
822822 0 0
823823 1005.30i 1.22151i 0.791819 + 0.610756i 0.209134π0.209134\pi
−0.791819 + 0.610756i 0.790866π0.790866\pi
824824 0 0
825825 105.260 0.127587
826826 0 0
827827 4.18687i 0.00506272i 0.999997 + 0.00253136i 0.000805757π0.000805757\pi
−0.999997 + 0.00253136i 0.999194π0.999194\pi
828828 0 0
829829 −25.8104 −0.0311343 −0.0155672 0.999879i 0.504955π-0.504955\pi
−0.0155672 + 0.999879i 0.504955π0.504955\pi
830830 0 0
831831 − 173.208i − 0.208434i
832832 0 0
833833 257.323 0.308911
834834 0 0
835835 − 572.088i − 0.685135i
836836 0 0
837837 −111.712 −0.133467
838838 0 0
839839 − 1299.25i − 1.54857i −0.632838 0.774284i 0.718110π-0.718110\pi
0.632838 0.774284i 0.281890π-0.281890\pi
840840 0 0
841841 −195.006 −0.231874
842842 0 0
843843 50.3465i 0.0597231i
844844 0 0
845845 377.738 0.447027
846846 0 0
847847 − 119.102i − 0.140616i
848848 0 0
849849 −110.168 −0.129762
850850 0 0
851851 − 505.288i − 0.593758i
852852 0 0
853853 16.3846 0.0192082 0.00960410 0.999954i 0.496943π-0.496943\pi
0.00960410 + 0.999954i 0.496943π0.496943\pi
854854 0 0
855855 − 192.995i − 0.225726i
856856 0 0
857857 −146.244 −0.170646 −0.0853231 0.996353i 0.527192π-0.527192\pi
−0.0853231 + 0.996353i 0.527192π0.527192\pi
858858 0 0
859859 1277.30i 1.48696i 0.668756 + 0.743482i 0.266827π0.266827\pi
−0.668756 + 0.743482i 0.733173π0.733173\pi
860860 0 0
861861 −558.146 −0.648253
862862 0 0
863863 1209.38i 1.40137i 0.713471 + 0.700685i 0.247122π0.247122\pi
−0.713471 + 0.700685i 0.752878π0.752878\pi
864864 0 0
865865 −734.501 −0.849134
866866 0 0
867867 − 365.531i − 0.421604i
868868 0 0
869869 −1076.98 −1.23933
870870 0 0
871871 13.6396i 0.0156597i
872872 0 0
873873 −364.277 −0.417270
874874 0 0
875875 − 49.8203i − 0.0569375i
876876 0 0
877877 −923.114 −1.05258 −0.526291 0.850305i 0.676418π-0.676418\pi
−0.526291 + 0.850305i 0.676418π0.676418\pi
878878 0 0
879879 − 15.5200i − 0.0176564i
880880 0 0
881881 −1243.05 −1.41095 −0.705476 0.708734i 0.749267π-0.749267\pi
−0.705476 + 0.708734i 0.749267π0.749267\pi
882882 0 0
883883 542.111i 0.613943i 0.951719 + 0.306971i 0.0993156π0.0993156\pi
−0.951719 + 0.306971i 0.900684π0.900684\pi
884884 0 0
885885 −110.029 −0.124327
886886 0 0
887887 1719.74i 1.93883i 0.245434 + 0.969413i 0.421070π0.421070\pi
−0.245434 + 0.969413i 0.578930π0.578930\pi
888888 0 0
889889 637.176 0.716733
890890 0 0
891891 − 109.389i − 0.122771i
892892 0 0
893893 1639.63 1.83610
894894 0 0
895895 − 304.563i − 0.340294i
896896 0 0
897897 7.05187 0.00786161
898898 0 0
899899 − 546.428i − 0.607817i
900900 0 0
901901 155.937 0.173071
902902 0 0
903903 − 101.138i − 0.112002i
904904 0 0
905905 −409.397 −0.452372
906906 0 0
907907 − 496.545i − 0.547458i −0.961807 0.273729i 0.911743π-0.911743\pi
0.961807 0.273729i 0.0882572π-0.0882572\pi
908908 0 0
909909 −467.574 −0.514383
910910 0 0
911911 1135.10i 1.24600i 0.782223 + 0.622999i 0.214086π0.214086\pi
−0.782223 + 0.622999i 0.785914π0.785914\pi
912912 0 0
913913 527.444 0.577704
914914 0 0
915915 − 86.1522i − 0.0941554i
916916 0 0
917917 317.317 0.346038
918918 0 0
919919 1378.92i 1.50045i 0.661180 + 0.750227i 0.270056π0.270056\pi
−0.661180 + 0.750227i 0.729944π0.729944\pi
920920 0 0
921921 602.195 0.653849
922922 0 0
923923 − 13.2745i − 0.0143819i
924924 0 0
925925 −164.936 −0.178309
926926 0 0
927927 87.7251i 0.0946333i
928928 0 0
929929 317.155 0.341394 0.170697 0.985324i 0.445398π-0.445398\pi
0.170697 + 0.985324i 0.445398π0.445398\pi
930930 0 0
931931 − 838.460i − 0.900601i
932932 0 0
933933 −333.921 −0.357900
934934 0 0
935935 239.968i 0.256651i
936936 0 0
937937 −1718.74 −1.83430 −0.917150 0.398542i 0.869516π-0.869516\pi
−0.917150 + 0.398542i 0.869516π0.869516\pi
938938 0 0
939939 − 407.921i − 0.434421i
940940 0 0
941941 703.030 0.747109 0.373555 0.927608i 0.378139π-0.378139\pi
0.373555 + 0.927608i 0.378139π0.378139\pi
942942 0 0
943943 1107.72i 1.17468i
944944 0 0
945945 −51.7748 −0.0547882
946946 0 0
947947 838.953i 0.885906i 0.896545 + 0.442953i 0.146069π0.146069\pi
−0.896545 + 0.442953i 0.853931π0.853931\pi
948948 0 0
949949 −34.2806 −0.0361229
950950 0 0
951951 − 946.699i − 0.995478i
952952 0 0
953953 −404.555 −0.424507 −0.212253 0.977215i 0.568080π-0.568080\pi
−0.212253 + 0.977215i 0.568080π0.568080\pi
954954 0 0
955955 480.944i 0.503606i
956956 0 0
957957 535.065 0.559106
958958 0 0
959959 365.781i 0.381419i
960960 0 0
961961 498.792 0.519035
962962 0 0
963963 156.178i 0.162178i
964964 0 0
965965 −3.34623 −0.00346759
966966 0 0
967967 − 912.447i − 0.943585i −0.881710 0.471793i 0.843607π-0.843607\pi
0.881710 0.471793i 0.156393π-0.156393\pi
968968 0 0
969969 439.986 0.454062
970970 0 0
971971 − 357.552i − 0.368231i −0.982905 0.184115i 0.941058π-0.941058\pi
0.982905 0.184115i 0.0589420π-0.0589420\pi
972972 0 0
973973 −973.240 −1.00025
974974 0 0
975975 − 2.30186i − 0.00236089i
976976 0 0
977977 −1028.81 −1.05303 −0.526513 0.850167i 0.676501π-0.676501\pi
−0.526513 + 0.850167i 0.676501π0.676501\pi
978978 0 0
979979 1800.02i 1.83863i
980980 0 0
981981 −439.778 −0.448295
982982 0 0
983983 − 1434.99i − 1.45980i −0.683552 0.729902i 0.739566π-0.739566\pi
0.683552 0.729902i 0.260434π-0.260434\pi
984984 0 0
985985 242.552 0.246245
986986 0 0
987987 − 439.864i − 0.445657i
988988 0 0
989989 −200.723 −0.202955
990990 0 0
991991 1312.26i 1.32418i 0.749426 + 0.662088i 0.230329π0.230329\pi
−0.749426 + 0.662088i 0.769671π0.769671\pi
992992 0 0
993993 423.135 0.426118
994994 0 0
995995 545.794i 0.548537i
996996 0 0
997997 −655.906 −0.657879 −0.328940 0.944351i 0.606691π-0.606691\pi
−0.328940 + 0.944351i 0.606691π0.606691\pi
998998 0 0
999999 171.406i 0.171578i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.3.e.d.511.5 8
3.2 odd 2 2880.3.e.n.2431.7 8
4.3 odd 2 inner 960.3.e.d.511.2 8
8.3 odd 2 480.3.e.a.31.8 yes 8
8.5 even 2 480.3.e.a.31.3 8
12.11 even 2 2880.3.e.n.2431.6 8
24.5 odd 2 1440.3.e.e.991.3 8
24.11 even 2 1440.3.e.e.991.2 8
40.3 even 4 2400.3.j.d.799.3 8
40.13 odd 4 2400.3.j.j.799.6 8
40.19 odd 2 2400.3.e.g.1951.2 8
40.27 even 4 2400.3.j.j.799.5 8
40.29 even 2 2400.3.e.g.1951.7 8
40.37 odd 4 2400.3.j.d.799.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.3.e.a.31.3 8 8.5 even 2
480.3.e.a.31.8 yes 8 8.3 odd 2
960.3.e.d.511.2 8 4.3 odd 2 inner
960.3.e.d.511.5 8 1.1 even 1 trivial
1440.3.e.e.991.2 8 24.11 even 2
1440.3.e.e.991.3 8 24.5 odd 2
2400.3.e.g.1951.2 8 40.19 odd 2
2400.3.e.g.1951.7 8 40.29 even 2
2400.3.j.d.799.3 8 40.3 even 4
2400.3.j.d.799.4 8 40.37 odd 4
2400.3.j.j.799.5 8 40.27 even 4
2400.3.j.j.799.6 8 40.13 odd 4
2880.3.e.n.2431.6 8 12.11 even 2
2880.3.e.n.2431.7 8 3.2 odd 2