Properties

Label 2880.3.e.n.2431.7
Level $2880$
Weight $3$
Character 2880.2431
Analytic conductor $78.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2880,3,Mod(2431,2880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2880.2431");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2431.7
Root \(1.40126 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 2880.2431
Dual form 2880.3.e.n.2431.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607 q^{5} +4.45607i q^{7} +O(q^{10})\) \(q+2.23607 q^{5} +4.45607i q^{7} +12.1543i q^{11} -0.265796 q^{13} -8.82953 q^{17} -28.7701i q^{19} -15.3177i q^{23} +5.00000 q^{25} -25.4164 q^{29} -21.4990i q^{31} +9.96407i q^{35} -32.9872 q^{37} -72.3161 q^{41} +13.1039i q^{43} -56.9909i q^{47} +29.1435 q^{49} -17.6608 q^{53} +27.1779i q^{55} +28.4094i q^{59} +22.2444 q^{61} -0.594339 q^{65} -51.3161i q^{67} -49.9422i q^{71} +128.973 q^{73} -54.1606 q^{77} -88.6084i q^{79} -43.3955i q^{83} -19.7434 q^{85} +148.097 q^{89} -1.18441i q^{91} -64.3318i q^{95} +121.426 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 16 q^{13} + 16 q^{17} + 40 q^{25} - 96 q^{29} + 112 q^{37} - 112 q^{41} - 184 q^{49} + 224 q^{53} - 80 q^{61} + 160 q^{65} + 272 q^{73} + 256 q^{77} + 160 q^{85} + 48 q^{89} + 528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) 4.45607i 0.636581i 0.947993 + 0.318291i \(0.103109\pi\)
−0.947993 + 0.318291i \(0.896891\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.1543i 1.10494i 0.833533 + 0.552470i \(0.186315\pi\)
−0.833533 + 0.552470i \(0.813685\pi\)
\(12\) 0 0
\(13\) −0.265796 −0.0204459 −0.0102229 0.999948i \(-0.503254\pi\)
−0.0102229 + 0.999948i \(0.503254\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −8.82953 −0.519384 −0.259692 0.965692i \(-0.583621\pi\)
−0.259692 + 0.965692i \(0.583621\pi\)
\(18\) 0 0
\(19\) − 28.7701i − 1.51421i −0.653291 0.757107i \(-0.726612\pi\)
0.653291 0.757107i \(-0.273388\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 15.3177i − 0.665988i −0.942929 0.332994i \(-0.891941\pi\)
0.942929 0.332994i \(-0.108059\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −25.4164 −0.876428 −0.438214 0.898871i \(-0.644389\pi\)
−0.438214 + 0.898871i \(0.644389\pi\)
\(30\) 0 0
\(31\) − 21.4990i − 0.693517i −0.937955 0.346758i \(-0.887282\pi\)
0.937955 0.346758i \(-0.112718\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.96407i 0.284688i
\(36\) 0 0
\(37\) −32.9872 −0.891545 −0.445772 0.895146i \(-0.647071\pi\)
−0.445772 + 0.895146i \(0.647071\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −72.3161 −1.76381 −0.881904 0.471429i \(-0.843738\pi\)
−0.881904 + 0.471429i \(0.843738\pi\)
\(42\) 0 0
\(43\) 13.1039i 0.304743i 0.988323 + 0.152371i \(0.0486910\pi\)
−0.988323 + 0.152371i \(0.951309\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 56.9909i − 1.21257i −0.795246 0.606287i \(-0.792658\pi\)
0.795246 0.606287i \(-0.207342\pi\)
\(48\) 0 0
\(49\) 29.1435 0.594765
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −17.6608 −0.333223 −0.166611 0.986023i \(-0.553283\pi\)
−0.166611 + 0.986023i \(0.553283\pi\)
\(54\) 0 0
\(55\) 27.1779i 0.494144i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 28.4094i 0.481515i 0.970585 + 0.240758i \(0.0773959\pi\)
−0.970585 + 0.240758i \(0.922604\pi\)
\(60\) 0 0
\(61\) 22.2444 0.364662 0.182331 0.983237i \(-0.441636\pi\)
0.182331 + 0.983237i \(0.441636\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.594339 −0.00914367
\(66\) 0 0
\(67\) − 51.3161i − 0.765912i −0.923767 0.382956i \(-0.874906\pi\)
0.923767 0.382956i \(-0.125094\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 49.9422i − 0.703411i −0.936111 0.351705i \(-0.885602\pi\)
0.936111 0.351705i \(-0.114398\pi\)
\(72\) 0 0
\(73\) 128.973 1.76676 0.883378 0.468661i \(-0.155263\pi\)
0.883378 + 0.468661i \(0.155263\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −54.1606 −0.703384
\(78\) 0 0
\(79\) − 88.6084i − 1.12162i −0.827943 0.560812i \(-0.810489\pi\)
0.827943 0.560812i \(-0.189511\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 43.3955i − 0.522838i −0.965225 0.261419i \(-0.915810\pi\)
0.965225 0.261419i \(-0.0841904\pi\)
\(84\) 0 0
\(85\) −19.7434 −0.232276
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 148.097 1.66401 0.832004 0.554769i \(-0.187193\pi\)
0.832004 + 0.554769i \(0.187193\pi\)
\(90\) 0 0
\(91\) − 1.18441i − 0.0130155i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 64.3318i − 0.677177i
\(96\) 0 0
\(97\) 121.426 1.25181 0.625905 0.779899i \(-0.284730\pi\)
0.625905 + 0.779899i \(0.284730\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −155.858 −1.54315 −0.771574 0.636139i \(-0.780530\pi\)
−0.771574 + 0.636139i \(0.780530\pi\)
\(102\) 0 0
\(103\) − 29.2417i − 0.283900i −0.989874 0.141950i \(-0.954663\pi\)
0.989874 0.141950i \(-0.0453372\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 52.0592i 0.486534i 0.969959 + 0.243267i \(0.0782192\pi\)
−0.969959 + 0.243267i \(0.921781\pi\)
\(108\) 0 0
\(109\) 146.593 1.34489 0.672443 0.740149i \(-0.265245\pi\)
0.672443 + 0.740149i \(0.265245\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 74.5415 0.659659 0.329829 0.944041i \(-0.393009\pi\)
0.329829 + 0.944041i \(0.393009\pi\)
\(114\) 0 0
\(115\) − 34.2515i − 0.297839i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 39.3450i − 0.330630i
\(120\) 0 0
\(121\) −26.7280 −0.220892
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) − 142.991i − 1.12591i −0.826487 0.562955i \(-0.809664\pi\)
0.826487 0.562955i \(-0.190336\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 71.2101i 0.543588i 0.962355 + 0.271794i \(0.0876170\pi\)
−0.962355 + 0.271794i \(0.912383\pi\)
\(132\) 0 0
\(133\) 128.201 0.963920
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −82.0860 −0.599168 −0.299584 0.954070i \(-0.596848\pi\)
−0.299584 + 0.954070i \(0.596848\pi\)
\(138\) 0 0
\(139\) 218.408i 1.57128i 0.618684 + 0.785640i \(0.287666\pi\)
−0.618684 + 0.785640i \(0.712334\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 3.23058i − 0.0225915i
\(144\) 0 0
\(145\) −56.8328 −0.391950
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −54.7913 −0.367727 −0.183864 0.982952i \(-0.558860\pi\)
−0.183864 + 0.982952i \(0.558860\pi\)
\(150\) 0 0
\(151\) − 159.042i − 1.05326i −0.850094 0.526631i \(-0.823455\pi\)
0.850094 0.526631i \(-0.176545\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 48.0733i − 0.310150i
\(156\) 0 0
\(157\) −196.132 −1.24925 −0.624625 0.780925i \(-0.714748\pi\)
−0.624625 + 0.780925i \(0.714748\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 68.2568 0.423956
\(162\) 0 0
\(163\) 9.14060i 0.0560773i 0.999607 + 0.0280387i \(0.00892615\pi\)
−0.999607 + 0.0280387i \(0.991074\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 255.845i − 1.53201i −0.642835 0.766004i \(-0.722242\pi\)
0.642835 0.766004i \(-0.277758\pi\)
\(168\) 0 0
\(169\) −168.929 −0.999582
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −328.479 −1.89872 −0.949361 0.314187i \(-0.898268\pi\)
−0.949361 + 0.314187i \(0.898268\pi\)
\(174\) 0 0
\(175\) 22.2803i 0.127316i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 136.205i − 0.760921i −0.924797 0.380461i \(-0.875765\pi\)
0.924797 0.380461i \(-0.124235\pi\)
\(180\) 0 0
\(181\) 183.088 1.01153 0.505767 0.862670i \(-0.331209\pi\)
0.505767 + 0.862670i \(0.331209\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −73.7615 −0.398711
\(186\) 0 0
\(187\) − 107.317i − 0.573888i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 215.085i 1.12610i 0.826424 + 0.563049i \(0.190372\pi\)
−0.826424 + 0.563049i \(0.809628\pi\)
\(192\) 0 0
\(193\) 1.49648 0.00775378 0.00387689 0.999992i \(-0.498766\pi\)
0.00387689 + 0.999992i \(0.498766\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 108.472 0.550621 0.275311 0.961355i \(-0.411219\pi\)
0.275311 + 0.961355i \(0.411219\pi\)
\(198\) 0 0
\(199\) − 244.087i − 1.22657i −0.789863 0.613283i \(-0.789849\pi\)
0.789863 0.613283i \(-0.210151\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 113.257i − 0.557917i
\(204\) 0 0
\(205\) −161.704 −0.788799
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 349.681 1.67312
\(210\) 0 0
\(211\) − 347.613i − 1.64746i −0.566984 0.823729i \(-0.691890\pi\)
0.566984 0.823729i \(-0.308110\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 29.3013i 0.136285i
\(216\) 0 0
\(217\) 95.8011 0.441480
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.34686 0.0106193
\(222\) 0 0
\(223\) − 305.374i − 1.36939i −0.728830 0.684694i \(-0.759936\pi\)
0.728830 0.684694i \(-0.240064\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 404.300i 1.78106i 0.454926 + 0.890529i \(0.349666\pi\)
−0.454926 + 0.890529i \(0.650334\pi\)
\(228\) 0 0
\(229\) −354.858 −1.54960 −0.774799 0.632208i \(-0.782149\pi\)
−0.774799 + 0.632208i \(0.782149\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −111.633 −0.479111 −0.239556 0.970883i \(-0.577002\pi\)
−0.239556 + 0.970883i \(0.577002\pi\)
\(234\) 0 0
\(235\) − 127.436i − 0.542279i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 248.183i 1.03842i 0.854646 + 0.519211i \(0.173774\pi\)
−0.854646 + 0.519211i \(0.826226\pi\)
\(240\) 0 0
\(241\) −13.4186 −0.0556788 −0.0278394 0.999612i \(-0.508863\pi\)
−0.0278394 + 0.999612i \(0.508863\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 65.1668 0.265987
\(246\) 0 0
\(247\) 7.64698i 0.0309594i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 338.305i − 1.34783i −0.738809 0.673915i \(-0.764611\pi\)
0.738809 0.673915i \(-0.235389\pi\)
\(252\) 0 0
\(253\) 186.177 0.735877
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 122.247 0.475671 0.237836 0.971305i \(-0.423562\pi\)
0.237836 + 0.971305i \(0.423562\pi\)
\(258\) 0 0
\(259\) − 146.993i − 0.567540i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 289.777i − 1.10181i −0.834566 0.550907i \(-0.814282\pi\)
0.834566 0.550907i \(-0.185718\pi\)
\(264\) 0 0
\(265\) −39.4908 −0.149022
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 245.321 0.911974 0.455987 0.889986i \(-0.349286\pi\)
0.455987 + 0.889986i \(0.349286\pi\)
\(270\) 0 0
\(271\) 262.071i 0.967050i 0.875331 + 0.483525i \(0.160644\pi\)
−0.875331 + 0.483525i \(0.839356\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 60.7717i 0.220988i
\(276\) 0 0
\(277\) −100.002 −0.361018 −0.180509 0.983573i \(-0.557774\pi\)
−0.180509 + 0.983573i \(0.557774\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −29.0676 −0.103443 −0.0517217 0.998662i \(-0.516471\pi\)
−0.0517217 + 0.998662i \(0.516471\pi\)
\(282\) 0 0
\(283\) 63.6053i 0.224754i 0.993666 + 0.112377i \(0.0358464\pi\)
−0.993666 + 0.112377i \(0.964154\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 322.246i − 1.12281i
\(288\) 0 0
\(289\) −211.039 −0.730240
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.96048 0.0305819 0.0152909 0.999883i \(-0.495133\pi\)
0.0152909 + 0.999883i \(0.495133\pi\)
\(294\) 0 0
\(295\) 63.5253i 0.215340i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.07140i 0.0136167i
\(300\) 0 0
\(301\) −58.3920 −0.193993
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 49.7400 0.163082
\(306\) 0 0
\(307\) − 347.678i − 1.13250i −0.824233 0.566250i \(-0.808394\pi\)
0.824233 0.566250i \(-0.191606\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 192.789i − 0.619901i −0.950753 0.309950i \(-0.899688\pi\)
0.950753 0.309950i \(-0.100312\pi\)
\(312\) 0 0
\(313\) −235.513 −0.752439 −0.376219 0.926531i \(-0.622776\pi\)
−0.376219 + 0.926531i \(0.622776\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 546.577 1.72422 0.862109 0.506723i \(-0.169143\pi\)
0.862109 + 0.506723i \(0.169143\pi\)
\(318\) 0 0
\(319\) − 308.920i − 0.968400i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 254.026i 0.786458i
\(324\) 0 0
\(325\) −1.32898 −0.00408918
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 253.956 0.771901
\(330\) 0 0
\(331\) − 244.297i − 0.738058i −0.929418 0.369029i \(-0.879690\pi\)
0.929418 0.369029i \(-0.120310\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 114.746i − 0.342526i
\(336\) 0 0
\(337\) 581.581 1.72576 0.862879 0.505410i \(-0.168659\pi\)
0.862879 + 0.505410i \(0.168659\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 261.306 0.766294
\(342\) 0 0
\(343\) 348.213i 1.01520i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 532.168i − 1.53363i −0.641871 0.766813i \(-0.721841\pi\)
0.641871 0.766813i \(-0.278159\pi\)
\(348\) 0 0
\(349\) −636.743 −1.82448 −0.912239 0.409659i \(-0.865648\pi\)
−0.912239 + 0.409659i \(0.865648\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −350.211 −0.992100 −0.496050 0.868294i \(-0.665217\pi\)
−0.496050 + 0.868294i \(0.665217\pi\)
\(354\) 0 0
\(355\) − 111.674i − 0.314575i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 76.6399i − 0.213482i −0.994287 0.106741i \(-0.965958\pi\)
0.994287 0.106741i \(-0.0340415\pi\)
\(360\) 0 0
\(361\) −466.717 −1.29284
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 288.393 0.790118
\(366\) 0 0
\(367\) − 410.325i − 1.11805i −0.829150 0.559026i \(-0.811175\pi\)
0.829150 0.559026i \(-0.188825\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 78.6978i − 0.212123i
\(372\) 0 0
\(373\) −56.1032 −0.150411 −0.0752053 0.997168i \(-0.523961\pi\)
−0.0752053 + 0.997168i \(0.523961\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.75559 0.0179193
\(378\) 0 0
\(379\) 197.508i 0.521130i 0.965456 + 0.260565i \(0.0839088\pi\)
−0.965456 + 0.260565i \(0.916091\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 388.780i 1.01509i 0.861625 + 0.507546i \(0.169447\pi\)
−0.861625 + 0.507546i \(0.830553\pi\)
\(384\) 0 0
\(385\) −121.107 −0.314563
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 537.091 1.38070 0.690348 0.723477i \(-0.257457\pi\)
0.690348 + 0.723477i \(0.257457\pi\)
\(390\) 0 0
\(391\) 135.248i 0.345904i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 198.134i − 0.501606i
\(396\) 0 0
\(397\) −536.944 −1.35250 −0.676252 0.736670i \(-0.736397\pi\)
−0.676252 + 0.736670i \(0.736397\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −658.617 −1.64244 −0.821218 0.570615i \(-0.806705\pi\)
−0.821218 + 0.570615i \(0.806705\pi\)
\(402\) 0 0
\(403\) 5.71436i 0.0141796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 400.937i − 0.985103i
\(408\) 0 0
\(409\) −695.505 −1.70050 −0.850251 0.526377i \(-0.823550\pi\)
−0.850251 + 0.526377i \(0.823550\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −126.594 −0.306523
\(414\) 0 0
\(415\) − 97.0353i − 0.233820i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 95.8396i 0.228734i 0.993439 + 0.114367i \(0.0364840\pi\)
−0.993439 + 0.114367i \(0.963516\pi\)
\(420\) 0 0
\(421\) 601.155 1.42792 0.713961 0.700185i \(-0.246899\pi\)
0.713961 + 0.700185i \(0.246899\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −44.1476 −0.103877
\(426\) 0 0
\(427\) 99.1226i 0.232137i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 74.1664i 0.172080i 0.996292 + 0.0860399i \(0.0274213\pi\)
−0.996292 + 0.0860399i \(0.972579\pi\)
\(432\) 0 0
\(433\) 436.312 1.00765 0.503824 0.863806i \(-0.331926\pi\)
0.503824 + 0.863806i \(0.331926\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −440.692 −1.00845
\(438\) 0 0
\(439\) 416.602i 0.948979i 0.880261 + 0.474489i \(0.157367\pi\)
−0.880261 + 0.474489i \(0.842633\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 283.661i − 0.640319i −0.947364 0.320159i \(-0.896264\pi\)
0.947364 0.320159i \(-0.103736\pi\)
\(444\) 0 0
\(445\) 331.154 0.744167
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 81.2571 0.180973 0.0904867 0.995898i \(-0.471158\pi\)
0.0904867 + 0.995898i \(0.471158\pi\)
\(450\) 0 0
\(451\) − 878.955i − 1.94890i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 2.64841i − 0.00582069i
\(456\) 0 0
\(457\) 386.747 0.846274 0.423137 0.906066i \(-0.360929\pi\)
0.423137 + 0.906066i \(0.360929\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.0382 0.0499744 0.0249872 0.999688i \(-0.492045\pi\)
0.0249872 + 0.999688i \(0.492045\pi\)
\(462\) 0 0
\(463\) − 606.274i − 1.30945i −0.755868 0.654724i \(-0.772785\pi\)
0.755868 0.654724i \(-0.227215\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 816.731i − 1.74889i −0.485125 0.874445i \(-0.661226\pi\)
0.485125 0.874445i \(-0.338774\pi\)
\(468\) 0 0
\(469\) 228.668 0.487565
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −159.270 −0.336722
\(474\) 0 0
\(475\) − 143.850i − 0.302843i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 528.270i 1.10286i 0.834221 + 0.551430i \(0.185918\pi\)
−0.834221 + 0.551430i \(0.814082\pi\)
\(480\) 0 0
\(481\) 8.76787 0.0182284
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 271.516 0.559827
\(486\) 0 0
\(487\) 57.5041i 0.118078i 0.998256 + 0.0590391i \(0.0188037\pi\)
−0.998256 + 0.0590391i \(0.981196\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 466.970i − 0.951058i −0.879700 0.475529i \(-0.842257\pi\)
0.879700 0.475529i \(-0.157743\pi\)
\(492\) 0 0
\(493\) 224.415 0.455203
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 222.546 0.447778
\(498\) 0 0
\(499\) 246.634i 0.494257i 0.968983 + 0.247129i \(0.0794870\pi\)
−0.968983 + 0.247129i \(0.920513\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 569.336i 1.13188i 0.824446 + 0.565940i \(0.191487\pi\)
−0.824446 + 0.565940i \(0.808513\pi\)
\(504\) 0 0
\(505\) −348.509 −0.690117
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −276.352 −0.542931 −0.271466 0.962448i \(-0.587508\pi\)
−0.271466 + 0.962448i \(0.587508\pi\)
\(510\) 0 0
\(511\) 574.713i 1.12468i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 65.3864i − 0.126964i
\(516\) 0 0
\(517\) 692.687 1.33982
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −487.826 −0.936326 −0.468163 0.883642i \(-0.655084\pi\)
−0.468163 + 0.883642i \(0.655084\pi\)
\(522\) 0 0
\(523\) − 800.276i − 1.53016i −0.643933 0.765082i \(-0.722698\pi\)
0.643933 0.765082i \(-0.277302\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 189.826i 0.360201i
\(528\) 0 0
\(529\) 294.367 0.556460
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.2214 0.0360626
\(534\) 0 0
\(535\) 116.408i 0.217585i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 354.220i 0.657179i
\(540\) 0 0
\(541\) 667.426 1.23369 0.616845 0.787085i \(-0.288410\pi\)
0.616845 + 0.787085i \(0.288410\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 327.791 0.601451
\(546\) 0 0
\(547\) 674.633i 1.23333i 0.787224 + 0.616667i \(0.211517\pi\)
−0.787224 + 0.616667i \(0.788483\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 731.232i 1.32710i
\(552\) 0 0
\(553\) 394.845 0.714005
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −861.502 −1.54668 −0.773341 0.633990i \(-0.781416\pi\)
−0.773341 + 0.633990i \(0.781416\pi\)
\(558\) 0 0
\(559\) − 3.48298i − 0.00623073i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 319.214i 0.566987i 0.958974 + 0.283494i \(0.0914935\pi\)
−0.958974 + 0.283494i \(0.908507\pi\)
\(564\) 0 0
\(565\) 166.680 0.295008
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 116.908 0.205463 0.102731 0.994709i \(-0.467242\pi\)
0.102731 + 0.994709i \(0.467242\pi\)
\(570\) 0 0
\(571\) 1104.69i 1.93467i 0.253508 + 0.967333i \(0.418416\pi\)
−0.253508 + 0.967333i \(0.581584\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 76.5887i − 0.133198i
\(576\) 0 0
\(577\) −802.968 −1.39163 −0.695813 0.718223i \(-0.744956\pi\)
−0.695813 + 0.718223i \(0.744956\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 193.373 0.332829
\(582\) 0 0
\(583\) − 214.656i − 0.368191i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 164.619i 0.280442i 0.990120 + 0.140221i \(0.0447813\pi\)
−0.990120 + 0.140221i \(0.955219\pi\)
\(588\) 0 0
\(589\) −618.528 −1.05013
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −378.471 −0.638231 −0.319116 0.947716i \(-0.603386\pi\)
−0.319116 + 0.947716i \(0.603386\pi\)
\(594\) 0 0
\(595\) − 87.9780i − 0.147862i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 86.5006i 0.144408i 0.997390 + 0.0722042i \(0.0230033\pi\)
−0.997390 + 0.0722042i \(0.976997\pi\)
\(600\) 0 0
\(601\) −416.690 −0.693327 −0.346664 0.937990i \(-0.612685\pi\)
−0.346664 + 0.937990i \(0.612685\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −59.7656 −0.0987861
\(606\) 0 0
\(607\) − 1056.06i − 1.73980i −0.493226 0.869901i \(-0.664183\pi\)
0.493226 0.869901i \(-0.335817\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.1480i 0.0247921i
\(612\) 0 0
\(613\) 1015.11 1.65596 0.827982 0.560754i \(-0.189489\pi\)
0.827982 + 0.560754i \(0.189489\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −575.077 −0.932053 −0.466027 0.884771i \(-0.654315\pi\)
−0.466027 + 0.884771i \(0.654315\pi\)
\(618\) 0 0
\(619\) − 339.933i − 0.549165i −0.961564 0.274583i \(-0.911460\pi\)
0.961564 0.274583i \(-0.0885397\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 659.929i 1.05928i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 291.261 0.463054
\(630\) 0 0
\(631\) 497.309i 0.788128i 0.919083 + 0.394064i \(0.128931\pi\)
−0.919083 + 0.394064i \(0.871069\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 319.737i − 0.503522i
\(636\) 0 0
\(637\) −7.74623 −0.0121605
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.7231 −0.0276491 −0.0138246 0.999904i \(-0.504401\pi\)
−0.0138246 + 0.999904i \(0.504401\pi\)
\(642\) 0 0
\(643\) 551.144i 0.857145i 0.903507 + 0.428573i \(0.140983\pi\)
−0.903507 + 0.428573i \(0.859017\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 433.954i − 0.670717i −0.942091 0.335358i \(-0.891143\pi\)
0.942091 0.335358i \(-0.108857\pi\)
\(648\) 0 0
\(649\) −345.297 −0.532045
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 49.9181 0.0764443 0.0382221 0.999269i \(-0.487831\pi\)
0.0382221 + 0.999269i \(0.487831\pi\)
\(654\) 0 0
\(655\) 159.231i 0.243100i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 410.479i 0.622882i 0.950266 + 0.311441i \(0.100812\pi\)
−0.950266 + 0.311441i \(0.899188\pi\)
\(660\) 0 0
\(661\) 565.667 0.855774 0.427887 0.903832i \(-0.359258\pi\)
0.427887 + 0.903832i \(0.359258\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 286.667 0.431078
\(666\) 0 0
\(667\) 389.322i 0.583691i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 270.366i 0.402930i
\(672\) 0 0
\(673\) 853.392 1.26804 0.634021 0.773316i \(-0.281403\pi\)
0.634021 + 0.773316i \(0.281403\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −570.348 −0.842464 −0.421232 0.906953i \(-0.638402\pi\)
−0.421232 + 0.906953i \(0.638402\pi\)
\(678\) 0 0
\(679\) 541.081i 0.796879i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 138.032i 0.202096i 0.994882 + 0.101048i \(0.0322196\pi\)
−0.994882 + 0.101048i \(0.967780\pi\)
\(684\) 0 0
\(685\) −183.550 −0.267956
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.69418 0.00681303
\(690\) 0 0
\(691\) − 200.350i − 0.289943i −0.989436 0.144971i \(-0.953691\pi\)
0.989436 0.144971i \(-0.0463090\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 488.375i 0.702698i
\(696\) 0 0
\(697\) 638.517 0.916094
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 148.485 0.211819 0.105909 0.994376i \(-0.466225\pi\)
0.105909 + 0.994376i \(0.466225\pi\)
\(702\) 0 0
\(703\) 949.043i 1.34999i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 694.514i − 0.982339i
\(708\) 0 0
\(709\) −808.403 −1.14020 −0.570101 0.821575i \(-0.693096\pi\)
−0.570101 + 0.821575i \(0.693096\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −329.316 −0.461874
\(714\) 0 0
\(715\) − 7.22380i − 0.0101032i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 796.673i − 1.10803i −0.832507 0.554015i \(-0.813095\pi\)
0.832507 0.554015i \(-0.186905\pi\)
\(720\) 0 0
\(721\) 130.303 0.180725
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −127.082 −0.175286
\(726\) 0 0
\(727\) − 1059.29i − 1.45707i −0.685010 0.728534i \(-0.740202\pi\)
0.685010 0.728534i \(-0.259798\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 115.702i − 0.158278i
\(732\) 0 0
\(733\) −1145.22 −1.56237 −0.781187 0.624298i \(-0.785385\pi\)
−0.781187 + 0.624298i \(0.785385\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 623.713 0.846286
\(738\) 0 0
\(739\) 155.577i 0.210523i 0.994445 + 0.105262i \(0.0335680\pi\)
−0.994445 + 0.105262i \(0.966432\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 733.962i − 0.987836i −0.869508 0.493918i \(-0.835564\pi\)
0.869508 0.493918i \(-0.164436\pi\)
\(744\) 0 0
\(745\) −122.517 −0.164453
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −231.979 −0.309719
\(750\) 0 0
\(751\) 1032.25i 1.37450i 0.726423 + 0.687248i \(0.241182\pi\)
−0.726423 + 0.687248i \(0.758818\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 355.630i − 0.471033i
\(756\) 0 0
\(757\) 70.8915 0.0936480 0.0468240 0.998903i \(-0.485090\pi\)
0.0468240 + 0.998903i \(0.485090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −446.601 −0.586861 −0.293430 0.955980i \(-0.594797\pi\)
−0.293430 + 0.955980i \(0.594797\pi\)
\(762\) 0 0
\(763\) 653.226i 0.856129i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 7.55111i − 0.00984500i
\(768\) 0 0
\(769\) 1477.88 1.92183 0.960913 0.276850i \(-0.0892904\pi\)
0.960913 + 0.276850i \(0.0892904\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −396.016 −0.512310 −0.256155 0.966636i \(-0.582456\pi\)
−0.256155 + 0.966636i \(0.582456\pi\)
\(774\) 0 0
\(775\) − 107.495i − 0.138703i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2080.54i 2.67078i
\(780\) 0 0
\(781\) 607.014 0.777227
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −438.565 −0.558681
\(786\) 0 0
\(787\) 1221.57i 1.55219i 0.630616 + 0.776095i \(0.282802\pi\)
−0.630616 + 0.776095i \(0.717198\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 332.162i 0.419926i
\(792\) 0 0
\(793\) −5.91248 −0.00745584
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −430.044 −0.539579 −0.269789 0.962919i \(-0.586954\pi\)
−0.269789 + 0.962919i \(0.586954\pi\)
\(798\) 0 0
\(799\) 503.203i 0.629791i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1567.58i 1.95216i
\(804\) 0 0
\(805\) 152.627 0.189599
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −980.456 −1.21194 −0.605968 0.795489i \(-0.707214\pi\)
−0.605968 + 0.795489i \(0.707214\pi\)
\(810\) 0 0
\(811\) − 712.890i − 0.879025i −0.898236 0.439513i \(-0.855151\pi\)
0.898236 0.439513i \(-0.144849\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.4390i 0.0250785i
\(816\) 0 0
\(817\) 377.001 0.461446
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 644.594 0.785133 0.392566 0.919724i \(-0.371587\pi\)
0.392566 + 0.919724i \(0.371587\pi\)
\(822\) 0 0
\(823\) 1005.30i 1.22151i 0.791819 + 0.610756i \(0.209134\pi\)
−0.791819 + 0.610756i \(0.790866\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 4.18687i − 0.00506272i −0.999997 0.00253136i \(-0.999194\pi\)
0.999997 0.00253136i \(-0.000805757\pi\)
\(828\) 0 0
\(829\) −25.8104 −0.0311343 −0.0155672 0.999879i \(-0.504955\pi\)
−0.0155672 + 0.999879i \(0.504955\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −257.323 −0.308911
\(834\) 0 0
\(835\) − 572.088i − 0.685135i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1299.25i 1.54857i 0.632838 + 0.774284i \(0.281890\pi\)
−0.632838 + 0.774284i \(0.718110\pi\)
\(840\) 0 0
\(841\) −195.006 −0.231874
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −377.738 −0.447027
\(846\) 0 0
\(847\) − 119.102i − 0.140616i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 505.288i 0.593758i
\(852\) 0 0
\(853\) 16.3846 0.0192082 0.00960410 0.999954i \(-0.496943\pi\)
0.00960410 + 0.999954i \(0.496943\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 146.244 0.170646 0.0853231 0.996353i \(-0.472808\pi\)
0.0853231 + 0.996353i \(0.472808\pi\)
\(858\) 0 0
\(859\) 1277.30i 1.48696i 0.668756 + 0.743482i \(0.266827\pi\)
−0.668756 + 0.743482i \(0.733173\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1209.38i − 1.40137i −0.713471 0.700685i \(-0.752878\pi\)
0.713471 0.700685i \(-0.247122\pi\)
\(864\) 0 0
\(865\) −734.501 −0.849134
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1076.98 1.23933
\(870\) 0 0
\(871\) 13.6396i 0.0156597i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 49.8203i 0.0569375i
\(876\) 0 0
\(877\) −923.114 −1.05258 −0.526291 0.850305i \(-0.676418\pi\)
−0.526291 + 0.850305i \(0.676418\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1243.05 1.41095 0.705476 0.708734i \(-0.250733\pi\)
0.705476 + 0.708734i \(0.250733\pi\)
\(882\) 0 0
\(883\) 542.111i 0.613943i 0.951719 + 0.306971i \(0.0993156\pi\)
−0.951719 + 0.306971i \(0.900684\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1719.74i − 1.93883i −0.245434 0.969413i \(-0.578930\pi\)
0.245434 0.969413i \(-0.421070\pi\)
\(888\) 0 0
\(889\) 637.176 0.716733
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1639.63 −1.83610
\(894\) 0 0
\(895\) − 304.563i − 0.340294i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 546.428i 0.607817i
\(900\) 0 0
\(901\) 155.937 0.173071
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 409.397 0.452372
\(906\) 0 0
\(907\) − 496.545i − 0.547458i −0.961807 0.273729i \(-0.911743\pi\)
0.961807 0.273729i \(-0.0882572\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1135.10i − 1.24600i −0.782223 0.622999i \(-0.785914\pi\)
0.782223 0.622999i \(-0.214086\pi\)
\(912\) 0 0
\(913\) 527.444 0.577704
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −317.317 −0.346038
\(918\) 0 0
\(919\) 1378.92i 1.50045i 0.661180 + 0.750227i \(0.270056\pi\)
−0.661180 + 0.750227i \(0.729944\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.2745i 0.0143819i
\(924\) 0 0
\(925\) −164.936 −0.178309
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −317.155 −0.341394 −0.170697 0.985324i \(-0.554602\pi\)
−0.170697 + 0.985324i \(0.554602\pi\)
\(930\) 0 0
\(931\) − 838.460i − 0.900601i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 239.968i − 0.256651i
\(936\) 0 0
\(937\) −1718.74 −1.83430 −0.917150 0.398542i \(-0.869516\pi\)
−0.917150 + 0.398542i \(0.869516\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −703.030 −0.747109 −0.373555 0.927608i \(-0.621861\pi\)
−0.373555 + 0.927608i \(0.621861\pi\)
\(942\) 0 0
\(943\) 1107.72i 1.17468i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 838.953i − 0.885906i −0.896545 0.442953i \(-0.853931\pi\)
0.896545 0.442953i \(-0.146069\pi\)
\(948\) 0 0
\(949\) −34.2806 −0.0361229
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 404.555 0.424507 0.212253 0.977215i \(-0.431920\pi\)
0.212253 + 0.977215i \(0.431920\pi\)
\(954\) 0 0
\(955\) 480.944i 0.503606i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 365.781i − 0.381419i
\(960\) 0 0
\(961\) 498.792 0.519035
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.34623 0.00346759
\(966\) 0 0
\(967\) − 912.447i − 0.943585i −0.881710 0.471793i \(-0.843607\pi\)
0.881710 0.471793i \(-0.156393\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 357.552i 0.368231i 0.982905 + 0.184115i \(0.0589420\pi\)
−0.982905 + 0.184115i \(0.941058\pi\)
\(972\) 0 0
\(973\) −973.240 −1.00025
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1028.81 1.05303 0.526513 0.850167i \(-0.323499\pi\)
0.526513 + 0.850167i \(0.323499\pi\)
\(978\) 0 0
\(979\) 1800.02i 1.83863i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1434.99i 1.45980i 0.683552 + 0.729902i \(0.260434\pi\)
−0.683552 + 0.729902i \(0.739566\pi\)
\(984\) 0 0
\(985\) 242.552 0.246245
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 200.723 0.202955
\(990\) 0 0
\(991\) 1312.26i 1.32418i 0.749426 + 0.662088i \(0.230329\pi\)
−0.749426 + 0.662088i \(0.769671\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 545.794i − 0.548537i
\(996\) 0 0
\(997\) −655.906 −0.657879 −0.328940 0.944351i \(-0.606691\pi\)
−0.328940 + 0.944351i \(0.606691\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.3.e.n.2431.7 8
3.2 odd 2 960.3.e.d.511.5 8
4.3 odd 2 inner 2880.3.e.n.2431.6 8
8.3 odd 2 1440.3.e.e.991.2 8
8.5 even 2 1440.3.e.e.991.3 8
12.11 even 2 960.3.e.d.511.2 8
24.5 odd 2 480.3.e.a.31.3 8
24.11 even 2 480.3.e.a.31.8 yes 8
120.29 odd 2 2400.3.e.g.1951.7 8
120.53 even 4 2400.3.j.j.799.6 8
120.59 even 2 2400.3.e.g.1951.2 8
120.77 even 4 2400.3.j.d.799.4 8
120.83 odd 4 2400.3.j.d.799.3 8
120.107 odd 4 2400.3.j.j.799.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.3.e.a.31.3 8 24.5 odd 2
480.3.e.a.31.8 yes 8 24.11 even 2
960.3.e.d.511.2 8 12.11 even 2
960.3.e.d.511.5 8 3.2 odd 2
1440.3.e.e.991.2 8 8.3 odd 2
1440.3.e.e.991.3 8 8.5 even 2
2400.3.e.g.1951.2 8 120.59 even 2
2400.3.e.g.1951.7 8 120.29 odd 2
2400.3.j.d.799.3 8 120.83 odd 4
2400.3.j.d.799.4 8 120.77 even 4
2400.3.j.j.799.5 8 120.107 odd 4
2400.3.j.j.799.6 8 120.53 even 4
2880.3.e.n.2431.6 8 4.3 odd 2 inner
2880.3.e.n.2431.7 8 1.1 even 1 trivial