L(s) = 1 | + 12·5-s − 4·7-s + 32·11-s + 4·13-s + 52·17-s + 40·23-s + 30·25-s − 96·31-s − 48·35-s + 60·37-s − 152·41-s − 88·43-s + 16·47-s + 8·49-s − 108·53-s + 384·55-s − 264·61-s + 48·65-s − 216·67-s + 240·71-s − 208·73-s − 128·77-s − 18·81-s + 336·83-s + 624·85-s − 16·91-s − 208·97-s + ⋯ |
L(s) = 1 | + 12/5·5-s − 4/7·7-s + 2.90·11-s + 4/13·13-s + 3.05·17-s + 1.73·23-s + 6/5·25-s − 3.09·31-s − 1.37·35-s + 1.62·37-s − 3.70·41-s − 2.04·43-s + 0.340·47-s + 8/49·49-s − 2.03·53-s + 6.98·55-s − 4.32·61-s + 0.738·65-s − 3.22·67-s + 3.38·71-s − 2.84·73-s − 1.66·77-s − 2/9·81-s + 4.04·83-s + 7.34·85-s − 0.175·91-s − 2.14·97-s + ⋯ |
Λ(s)=(=((248⋅38⋅58)s/2ΓC(s)8L(s)Λ(3−s)
Λ(s)=(=((248⋅38⋅58)s/2ΓC(s+1)8L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
12.37349744 |
L(21) |
≈ |
12.37349744 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+p2T4)2 |
| 5 | 1−12T+114T2−708T3+826pT4−708p2T5+114p4T6−12p6T7+p8T8 |
good | 7 | 1+4T+8T2+316T3−2816T4−2108T5+64024T6+120828T7+11331966T8+120828p2T9+64024p4T10−2108p6T11−2816p8T12+316p10T13+8p12T14+4p14T15+p16T16 |
| 11 | (1−16T+126T2+1888T3−31078T4+1888p2T5+126p4T6−16p6T7+p8T8)2 |
| 13 | 1−4T+8T2−124pT3+1072pT4+328076T5−124520T6+28503876T7−763526370T8+28503876p2T9−124520p4T10+328076p6T11+1072p9T12−124p11T13+8p12T14−4p14T15+p16T16 |
| 17 | 1−52T+1352T2−28204T3+490768T4−6510964T5+72784600T6−481409004T7+154737438T8−481409004p2T9+72784600p4T10−6510964p6T11+490768p8T12−28204p10T13+1352p12T14−52p14T15+p16T16 |
| 19 | 1−2000T2+1889820T4−1128357424T6+476406585350T8−1128357424p4T10+1889820p8T12−2000p12T14+p16T16 |
| 23 | 1−40T+800T2−18248T3−19516T4+7340008T5−111492768T6+1524968904T7−5167201274T8+1524968904p2T9−111492768p4T10+7340008p6T11−19516p8T12−18248p10T13+800p12T14−40p14T15+p16T16 |
| 29 | 1−2228T2+1857576T4−965861788T6+647582808974T8−965861788p4T10+1857576p8T12−2228p12T14+p16T16 |
| 31 | (1+48T+1740T2−1968T3−318442T4−1968p2T5+1740p4T6+48p6T7+p8T8)2 |
| 37 | 1−60T+1800T2+32652T3−6760976T4+249442548T5−2263719528T6−292468480836T7+19178941117086T8−292468480836p2T9−2263719528p4T10+249442548p6T11−6760976p8T12+32652p10T13+1800p12T14−60p14T15+p16T16 |
| 41 | (1+76T+5776T2+267748T3+13703518T4+267748p2T5+5776p4T6+76p6T7+p8T8)2 |
| 43 | 1+88T+3872T2+100696T3+1714468T4+169137736T5+13315542880T6+642392563656T7+29742475153158T8+642392563656p2T9+13315542880p4T10+169137736p6T11+1714468p8T12+100696p10T13+3872p12T14+88p14T15+p16T16 |
| 47 | 1−16T+128T2+128816T3+2412964T4−504683248T5+16062853504T6−177987325872T7−50194759450554T8−177987325872p2T9+16062853504p4T10−504683248p6T11+2412964p8T12+128816p10T13+128p12T14−16p14T15+p16T16 |
| 53 | 1+108T+5832T2+412884T3+23090224T4+11383740pT5+15734940120T6+223612868052T7−24915462238434T8+223612868052p2T9+15734940120p4T10+11383740p7T11+23090224p8T12+412884p10T13+5832p12T14+108p14T15+p16T16 |
| 59 | 1−25500T2+290547640T4−1939529752884T6+8319211197765870T8−1939529752884p4T10+290547640p8T12−25500p12T14+p16T16 |
| 61 | (1+132T+13872T2+941868T3+61614014T4+941868p2T5+13872p4T6+132p6T7+p8T8)2 |
| 67 | 1+216T+23328T2+2220888T3+213731236T4+17658282696T5+1294438543200T6+97283636525256T7+7010705853400710T8+97283636525256p2T9+1294438543200p4T10+17658282696p6T11+213731236p8T12+2220888p10T13+23328p12T14+216p14T15+p16T16 |
| 71 | (1−120T+20340T2−1543656T3+149872550T4−1543656p2T5+20340p4T6−120p6T7+p8T8)2 |
| 73 | 1+208T+21632T2+2121136T3+133201276T4+248473360T5−580118578304T6−88473819716496T7−8873634681591930T8−88473819716496p2T9−580118578304p4T10+248473360p6T11+133201276p8T12+2121136p10T13+21632p12T14+208p14T15+p16T16 |
| 79 | 1−32504T2+462697980T4−4035012008776T6+27090604999745414T8−4035012008776p4T10+462697980p8T12−32504p12T14+p16T16 |
| 83 | 1−336T+56448T2−7845648T3+1037744740T4−116459238960T5+11328785476992T6−1064762407254768T7+93992795964479238T8−1064762407254768p2T9+11328785476992p4T10−116459238960p6T11+1037744740p8T12−7845648p10T13+56448p12T14−336p14T15+p16T16 |
| 89 | 1−25856T2+291349884T4−1811616834304T6+9967156810684550T8−1811616834304p4T10+291349884p8T12−25856p12T14+p16T16 |
| 97 | 1+208T+21632T2+956336T3−203065348T4−29702194672T5−1328057611392T6+139759626438000T7+32182715530229254T8+139759626438000p2T9−1328057611392p4T10−29702194672p6T11−203065348p8T12+956336p10T13+21632p12T14+208p14T15+p16T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.05371527180654207206207355446, −3.76838134965731607558421645743, −3.73660696040616318198794468104, −3.66245239908368265561829071525, −3.45745919215482034589927655656, −3.32007384724287212576809728490, −3.30317241227808760400548906744, −3.25414433350991750098136237606, −3.03659984838017652073938272945, −3.01152903926381871594545143044, −2.79852182898296527583185591415, −2.44225971568453772716518243880, −2.24974049631523435540852144840, −2.15335987779485778129413460005, −2.05854793175559144959742431310, −1.86958297945773156469470601551, −1.55507737203613120679764629554, −1.46672640223742759371929411765, −1.44678456012447289212102404805, −1.30813122649260456247396024048, −1.22542057587887873392484207828, −1.14446651728387048762505312516, −0.57483693624640599727664606790, −0.31854129159442069006189263696, −0.23577505461654047839190735307,
0.23577505461654047839190735307, 0.31854129159442069006189263696, 0.57483693624640599727664606790, 1.14446651728387048762505312516, 1.22542057587887873392484207828, 1.30813122649260456247396024048, 1.44678456012447289212102404805, 1.46672640223742759371929411765, 1.55507737203613120679764629554, 1.86958297945773156469470601551, 2.05854793175559144959742431310, 2.15335987779485778129413460005, 2.24974049631523435540852144840, 2.44225971568453772716518243880, 2.79852182898296527583185591415, 3.01152903926381871594545143044, 3.03659984838017652073938272945, 3.25414433350991750098136237606, 3.30317241227808760400548906744, 3.32007384724287212576809728490, 3.45745919215482034589927655656, 3.66245239908368265561829071525, 3.73660696040616318198794468104, 3.76838134965731607558421645743, 4.05371527180654207206207355446
Plot not available for L-functions of degree greater than 10.