Properties

Label 960.3.bg.k.577.1
Level $960$
Weight $3$
Character 960.577
Analytic conductor $26.158$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(193,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} + 269x^{4} - 1116x^{3} + 2312x^{2} + 680x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(-2.88489 - 2.88489i\) of defining polynomial
Character \(\chi\) \(=\) 960.577
Dual form 960.3.bg.k.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 1.22474i) q^{3} +(-1.88489 + 4.63111i) q^{5} +(-6.02356 - 6.02356i) q^{7} -3.00000i q^{9} +O(q^{10})\) \(q+(-1.22474 + 1.22474i) q^{3} +(-1.88489 + 4.63111i) q^{5} +(-6.02356 - 6.02356i) q^{7} -3.00000i q^{9} +17.0038 q^{11} +(-0.124585 + 0.124585i) q^{13} +(-3.36342 - 7.98044i) q^{15} +(10.7744 + 10.7744i) q^{17} +4.04713i q^{19} +14.7547 q^{21} +(-1.85568 + 1.85568i) q^{23} +(-17.8944 - 17.4583i) q^{25} +(3.67423 + 3.67423i) q^{27} +54.4448i q^{29} +53.1995 q^{31} +(-20.8254 + 20.8254i) q^{33} +(39.2496 - 16.5420i) q^{35} +(-21.2693 - 21.2693i) q^{37} -0.305169i q^{39} -52.1414 q^{41} +(-50.4554 + 50.4554i) q^{43} +(13.8933 + 5.65467i) q^{45} +(-13.4045 - 13.4045i) q^{47} +23.5667i q^{49} -26.3918 q^{51} +(-12.4315 + 12.4315i) q^{53} +(-32.0504 + 78.7466i) q^{55} +(-4.95670 - 4.95670i) q^{57} +8.79413i q^{59} -105.860 q^{61} +(-18.0707 + 18.0707i) q^{63} +(-0.342137 - 0.811794i) q^{65} +(-46.8595 - 46.8595i) q^{67} -4.54547i q^{69} +56.8955 q^{71} +(-52.7296 + 52.7296i) q^{73} +(43.2980 - 0.534094i) q^{75} +(-102.424 - 102.424i) q^{77} -15.2920i q^{79} -9.00000 q^{81} +(46.1914 - 46.1914i) q^{83} +(-70.2060 + 29.5888i) q^{85} +(-66.6810 - 66.6810i) q^{87} -0.948538i q^{89} +1.50089 q^{91} +(-65.1558 + 65.1558i) q^{93} +(-18.7427 - 7.62840i) q^{95} +(77.6693 + 77.6693i) q^{97} -51.0115i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 12 q^{5} - 4 q^{7} + 32 q^{11} + 4 q^{13} + 52 q^{17} + 24 q^{21} + 40 q^{23} - 84 q^{25} - 96 q^{31} + 60 q^{33} + 24 q^{35} + 60 q^{37} - 152 q^{41} - 88 q^{43} + 16 q^{47} - 168 q^{51} - 108 q^{53} - 116 q^{55} - 24 q^{57} - 264 q^{61} - 12 q^{63} + 164 q^{65} - 216 q^{67} + 240 q^{71} - 208 q^{73} + 120 q^{75} - 168 q^{77} - 72 q^{81} + 336 q^{83} + 12 q^{85} - 252 q^{87} + 592 q^{91} - 264 q^{93} + 128 q^{95} - 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 + 1.22474i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −1.88489 + 4.63111i −0.376978 + 0.926222i
\(6\) 0 0
\(7\) −6.02356 6.02356i −0.860509 0.860509i 0.130888 0.991397i \(-0.458217\pi\)
−0.991397 + 0.130888i \(0.958217\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 17.0038 1.54580 0.772901 0.634526i \(-0.218805\pi\)
0.772901 + 0.634526i \(0.218805\pi\)
\(12\) 0 0
\(13\) −0.124585 + 0.124585i −0.00958344 + 0.00958344i −0.711882 0.702299i \(-0.752157\pi\)
0.702299 + 0.711882i \(0.252157\pi\)
\(14\) 0 0
\(15\) −3.36342 7.98044i −0.224228 0.532029i
\(16\) 0 0
\(17\) 10.7744 + 10.7744i 0.633788 + 0.633788i 0.949016 0.315228i \(-0.102081\pi\)
−0.315228 + 0.949016i \(0.602081\pi\)
\(18\) 0 0
\(19\) 4.04713i 0.213007i 0.994312 + 0.106503i \(0.0339655\pi\)
−0.994312 + 0.106503i \(0.966035\pi\)
\(20\) 0 0
\(21\) 14.7547 0.702603
\(22\) 0 0
\(23\) −1.85568 + 1.85568i −0.0806817 + 0.0806817i −0.746296 0.665614i \(-0.768170\pi\)
0.665614 + 0.746296i \(0.268170\pi\)
\(24\) 0 0
\(25\) −17.8944 17.4583i −0.715775 0.698331i
\(26\) 0 0
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 54.4448i 1.87741i 0.344724 + 0.938704i \(0.387972\pi\)
−0.344724 + 0.938704i \(0.612028\pi\)
\(30\) 0 0
\(31\) 53.1995 1.71611 0.858056 0.513556i \(-0.171672\pi\)
0.858056 + 0.513556i \(0.171672\pi\)
\(32\) 0 0
\(33\) −20.8254 + 20.8254i −0.631071 + 0.631071i
\(34\) 0 0
\(35\) 39.2496 16.5420i 1.12142 0.472629i
\(36\) 0 0
\(37\) −21.2693 21.2693i −0.574846 0.574846i 0.358633 0.933479i \(-0.383243\pi\)
−0.933479 + 0.358633i \(0.883243\pi\)
\(38\) 0 0
\(39\) 0.305169i 0.00782484i
\(40\) 0 0
\(41\) −52.1414 −1.27174 −0.635871 0.771796i \(-0.719359\pi\)
−0.635871 + 0.771796i \(0.719359\pi\)
\(42\) 0 0
\(43\) −50.4554 + 50.4554i −1.17338 + 1.17338i −0.191984 + 0.981398i \(0.561492\pi\)
−0.981398 + 0.191984i \(0.938508\pi\)
\(44\) 0 0
\(45\) 13.8933 + 5.65467i 0.308741 + 0.125659i
\(46\) 0 0
\(47\) −13.4045 13.4045i −0.285201 0.285201i 0.549978 0.835179i \(-0.314636\pi\)
−0.835179 + 0.549978i \(0.814636\pi\)
\(48\) 0 0
\(49\) 23.5667i 0.480952i
\(50\) 0 0
\(51\) −26.3918 −0.517486
\(52\) 0 0
\(53\) −12.4315 + 12.4315i −0.234556 + 0.234556i −0.814591 0.580035i \(-0.803039\pi\)
0.580035 + 0.814591i \(0.303039\pi\)
\(54\) 0 0
\(55\) −32.0504 + 78.7466i −0.582734 + 1.43176i
\(56\) 0 0
\(57\) −4.95670 4.95670i −0.0869596 0.0869596i
\(58\) 0 0
\(59\) 8.79413i 0.149053i 0.997219 + 0.0745265i \(0.0237445\pi\)
−0.997219 + 0.0745265i \(0.976255\pi\)
\(60\) 0 0
\(61\) −105.860 −1.73542 −0.867708 0.497074i \(-0.834408\pi\)
−0.867708 + 0.497074i \(0.834408\pi\)
\(62\) 0 0
\(63\) −18.0707 + 18.0707i −0.286836 + 0.286836i
\(64\) 0 0
\(65\) −0.342137 0.811794i −0.00526364 0.0124891i
\(66\) 0 0
\(67\) −46.8595 46.8595i −0.699396 0.699396i 0.264885 0.964280i \(-0.414666\pi\)
−0.964280 + 0.264885i \(0.914666\pi\)
\(68\) 0 0
\(69\) 4.54547i 0.0658763i
\(70\) 0 0
\(71\) 56.8955 0.801346 0.400673 0.916221i \(-0.368776\pi\)
0.400673 + 0.916221i \(0.368776\pi\)
\(72\) 0 0
\(73\) −52.7296 + 52.7296i −0.722324 + 0.722324i −0.969078 0.246754i \(-0.920636\pi\)
0.246754 + 0.969078i \(0.420636\pi\)
\(74\) 0 0
\(75\) 43.2980 0.534094i 0.577306 0.00712125i
\(76\) 0 0
\(77\) −102.424 102.424i −1.33018 1.33018i
\(78\) 0 0
\(79\) 15.2920i 0.193569i −0.995305 0.0967846i \(-0.969144\pi\)
0.995305 0.0967846i \(-0.0308558\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) 46.1914 46.1914i 0.556523 0.556523i −0.371792 0.928316i \(-0.621257\pi\)
0.928316 + 0.371792i \(0.121257\pi\)
\(84\) 0 0
\(85\) −70.2060 + 29.5888i −0.825953 + 0.348104i
\(86\) 0 0
\(87\) −66.6810 66.6810i −0.766449 0.766449i
\(88\) 0 0
\(89\) 0.948538i 0.0106577i −0.999986 0.00532886i \(-0.998304\pi\)
0.999986 0.00532886i \(-0.00169624\pi\)
\(90\) 0 0
\(91\) 1.50089 0.0164933
\(92\) 0 0
\(93\) −65.1558 + 65.1558i −0.700600 + 0.700600i
\(94\) 0 0
\(95\) −18.7427 7.62840i −0.197292 0.0802989i
\(96\) 0 0
\(97\) 77.6693 + 77.6693i 0.800715 + 0.800715i 0.983207 0.182492i \(-0.0584165\pi\)
−0.182492 + 0.983207i \(0.558417\pi\)
\(98\) 0 0
\(99\) 51.0115i 0.515268i
\(100\) 0 0
\(101\) 49.6243 0.491329 0.245665 0.969355i \(-0.420994\pi\)
0.245665 + 0.969355i \(0.420994\pi\)
\(102\) 0 0
\(103\) −18.7930 + 18.7930i −0.182457 + 0.182457i −0.792425 0.609969i \(-0.791182\pi\)
0.609969 + 0.792425i \(0.291182\pi\)
\(104\) 0 0
\(105\) −27.8109 + 68.3305i −0.264866 + 0.650766i
\(106\) 0 0
\(107\) −69.0004 69.0004i −0.644863 0.644863i 0.306884 0.951747i \(-0.400714\pi\)
−0.951747 + 0.306884i \(0.900714\pi\)
\(108\) 0 0
\(109\) 130.003i 1.19268i 0.802730 + 0.596342i \(0.203380\pi\)
−0.802730 + 0.596342i \(0.796620\pi\)
\(110\) 0 0
\(111\) 52.0989 0.469360
\(112\) 0 0
\(113\) −157.585 + 157.585i −1.39456 + 1.39456i −0.579799 + 0.814760i \(0.696869\pi\)
−0.814760 + 0.579799i \(0.803131\pi\)
\(114\) 0 0
\(115\) −5.09610 12.0916i −0.0443139 0.105144i
\(116\) 0 0
\(117\) 0.373754 + 0.373754i 0.00319448 + 0.00319448i
\(118\) 0 0
\(119\) 129.801i 1.09076i
\(120\) 0 0
\(121\) 168.130 1.38951
\(122\) 0 0
\(123\) 63.8599 63.8599i 0.519186 0.519186i
\(124\) 0 0
\(125\) 114.580 49.9638i 0.916641 0.399711i
\(126\) 0 0
\(127\) 106.268 + 106.268i 0.836753 + 0.836753i 0.988430 0.151677i \(-0.0484674\pi\)
−0.151677 + 0.988430i \(0.548467\pi\)
\(128\) 0 0
\(129\) 123.590i 0.958062i
\(130\) 0 0
\(131\) −102.890 −0.785421 −0.392711 0.919662i \(-0.628463\pi\)
−0.392711 + 0.919662i \(0.628463\pi\)
\(132\) 0 0
\(133\) 24.3781 24.3781i 0.183294 0.183294i
\(134\) 0 0
\(135\) −23.9413 + 10.0903i −0.177343 + 0.0747426i
\(136\) 0 0
\(137\) −84.7079 84.7079i −0.618306 0.618306i 0.326791 0.945097i \(-0.394033\pi\)
−0.945097 + 0.326791i \(0.894033\pi\)
\(138\) 0 0
\(139\) 244.050i 1.75575i 0.478887 + 0.877877i \(0.341040\pi\)
−0.478887 + 0.877877i \(0.658960\pi\)
\(140\) 0 0
\(141\) 32.8341 0.232866
\(142\) 0 0
\(143\) −2.11842 + 2.11842i −0.0148141 + 0.0148141i
\(144\) 0 0
\(145\) −252.140 102.623i −1.73890 0.707742i
\(146\) 0 0
\(147\) −28.8631 28.8631i −0.196348 0.196348i
\(148\) 0 0
\(149\) 220.759i 1.48161i 0.671722 + 0.740803i \(0.265555\pi\)
−0.671722 + 0.740803i \(0.734445\pi\)
\(150\) 0 0
\(151\) −217.984 −1.44360 −0.721802 0.692099i \(-0.756686\pi\)
−0.721802 + 0.692099i \(0.756686\pi\)
\(152\) 0 0
\(153\) 32.3232 32.3232i 0.211263 0.211263i
\(154\) 0 0
\(155\) −100.275 + 246.373i −0.646937 + 1.58950i
\(156\) 0 0
\(157\) 185.043 + 185.043i 1.17862 + 1.17862i 0.980096 + 0.198522i \(0.0636141\pi\)
0.198522 + 0.980096i \(0.436386\pi\)
\(158\) 0 0
\(159\) 30.4508i 0.191514i
\(160\) 0 0
\(161\) 22.3556 0.138855
\(162\) 0 0
\(163\) −15.5263 + 15.5263i −0.0952533 + 0.0952533i −0.753128 0.657874i \(-0.771456\pi\)
0.657874 + 0.753128i \(0.271456\pi\)
\(164\) 0 0
\(165\) −57.1910 135.698i −0.346612 0.822412i
\(166\) 0 0
\(167\) 21.5448 + 21.5448i 0.129011 + 0.129011i 0.768664 0.639653i \(-0.220922\pi\)
−0.639653 + 0.768664i \(0.720922\pi\)
\(168\) 0 0
\(169\) 168.969i 0.999816i
\(170\) 0 0
\(171\) 12.1414 0.0710023
\(172\) 0 0
\(173\) −86.5808 + 86.5808i −0.500467 + 0.500467i −0.911583 0.411116i \(-0.865139\pi\)
0.411116 + 0.911583i \(0.365139\pi\)
\(174\) 0 0
\(175\) 2.62679 + 212.949i 0.0150102 + 1.21685i
\(176\) 0 0
\(177\) −10.7706 10.7706i −0.0608507 0.0608507i
\(178\) 0 0
\(179\) 45.4647i 0.253993i 0.991903 + 0.126996i \(0.0405336\pi\)
−0.991903 + 0.126996i \(0.959466\pi\)
\(180\) 0 0
\(181\) −13.4991 −0.0745807 −0.0372903 0.999304i \(-0.511873\pi\)
−0.0372903 + 0.999304i \(0.511873\pi\)
\(182\) 0 0
\(183\) 129.652 129.652i 0.708481 0.708481i
\(184\) 0 0
\(185\) 138.591 58.4101i 0.749139 0.315730i
\(186\) 0 0
\(187\) 183.206 + 183.206i 0.979711 + 0.979711i
\(188\) 0 0
\(189\) 44.2640i 0.234201i
\(190\) 0 0
\(191\) −67.6690 −0.354288 −0.177144 0.984185i \(-0.556686\pi\)
−0.177144 + 0.984185i \(0.556686\pi\)
\(192\) 0 0
\(193\) 31.9967 31.9967i 0.165786 0.165786i −0.619338 0.785124i \(-0.712599\pi\)
0.785124 + 0.619338i \(0.212599\pi\)
\(194\) 0 0
\(195\) 1.41327 + 0.575210i 0.00724754 + 0.00294980i
\(196\) 0 0
\(197\) −122.056 122.056i −0.619575 0.619575i 0.325848 0.945422i \(-0.394350\pi\)
−0.945422 + 0.325848i \(0.894350\pi\)
\(198\) 0 0
\(199\) 4.36392i 0.0219292i −0.999940 0.0109646i \(-0.996510\pi\)
0.999940 0.0109646i \(-0.00349022\pi\)
\(200\) 0 0
\(201\) 114.782 0.571054
\(202\) 0 0
\(203\) 327.952 327.952i 1.61553 1.61553i
\(204\) 0 0
\(205\) 98.2809 241.473i 0.479419 1.17791i
\(206\) 0 0
\(207\) 5.56704 + 5.56704i 0.0268939 + 0.0268939i
\(208\) 0 0
\(209\) 68.8167i 0.329266i
\(210\) 0 0
\(211\) 183.096 0.867756 0.433878 0.900972i \(-0.357145\pi\)
0.433878 + 0.900972i \(0.357145\pi\)
\(212\) 0 0
\(213\) −69.6825 + 69.6825i −0.327148 + 0.327148i
\(214\) 0 0
\(215\) −138.562 328.768i −0.644473 1.52915i
\(216\) 0 0
\(217\) −320.451 320.451i −1.47673 1.47673i
\(218\) 0 0
\(219\) 129.161i 0.589775i
\(220\) 0 0
\(221\) −2.68465 −0.0121477
\(222\) 0 0
\(223\) 5.03964 5.03964i 0.0225993 0.0225993i −0.695717 0.718316i \(-0.744913\pi\)
0.718316 + 0.695717i \(0.244913\pi\)
\(224\) 0 0
\(225\) −52.3748 + 53.6831i −0.232777 + 0.238592i
\(226\) 0 0
\(227\) −226.475 226.475i −0.997689 0.997689i 0.00230792 0.999997i \(-0.499265\pi\)
−0.999997 + 0.00230792i \(0.999265\pi\)
\(228\) 0 0
\(229\) 276.917i 1.20924i −0.796513 0.604621i \(-0.793324\pi\)
0.796513 0.604621i \(-0.206676\pi\)
\(230\) 0 0
\(231\) 250.886 1.08609
\(232\) 0 0
\(233\) 198.106 198.106i 0.850242 0.850242i −0.139921 0.990163i \(-0.544685\pi\)
0.990163 + 0.139921i \(0.0446847\pi\)
\(234\) 0 0
\(235\) 87.3435 36.8116i 0.371675 0.156645i
\(236\) 0 0
\(237\) 18.7288 + 18.7288i 0.0790243 + 0.0790243i
\(238\) 0 0
\(239\) 230.183i 0.963111i 0.876416 + 0.481555i \(0.159928\pi\)
−0.876416 + 0.481555i \(0.840072\pi\)
\(240\) 0 0
\(241\) 283.542 1.17652 0.588261 0.808671i \(-0.299813\pi\)
0.588261 + 0.808671i \(0.299813\pi\)
\(242\) 0 0
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −109.140 44.4206i −0.445468 0.181308i
\(246\) 0 0
\(247\) −0.504210 0.504210i −0.00204134 0.00204134i
\(248\) 0 0
\(249\) 113.145i 0.454400i
\(250\) 0 0
\(251\) 202.731 0.807694 0.403847 0.914826i \(-0.367673\pi\)
0.403847 + 0.914826i \(0.367673\pi\)
\(252\) 0 0
\(253\) −31.5536 + 31.5536i −0.124718 + 0.124718i
\(254\) 0 0
\(255\) 49.7456 122.223i 0.195081 0.479307i
\(256\) 0 0
\(257\) 202.151 + 202.151i 0.786580 + 0.786580i 0.980932 0.194352i \(-0.0622604\pi\)
−0.194352 + 0.980932i \(0.562260\pi\)
\(258\) 0 0
\(259\) 256.234i 0.989320i
\(260\) 0 0
\(261\) 163.334 0.625803
\(262\) 0 0
\(263\) 34.3895 34.3895i 0.130759 0.130759i −0.638699 0.769457i \(-0.720527\pi\)
0.769457 + 0.638699i \(0.220527\pi\)
\(264\) 0 0
\(265\) −34.1395 81.0035i −0.128828 0.305674i
\(266\) 0 0
\(267\) 1.16172 + 1.16172i 0.00435100 + 0.00435100i
\(268\) 0 0
\(269\) 32.5471i 0.120993i −0.998168 0.0604964i \(-0.980732\pi\)
0.998168 0.0604964i \(-0.0192684\pi\)
\(270\) 0 0
\(271\) 91.9490 0.339295 0.169648 0.985505i \(-0.445737\pi\)
0.169648 + 0.985505i \(0.445737\pi\)
\(272\) 0 0
\(273\) −1.83820 + 1.83820i −0.00673335 + 0.00673335i
\(274\) 0 0
\(275\) −304.273 296.858i −1.10645 1.07948i
\(276\) 0 0
\(277\) −27.6712 27.6712i −0.0998959 0.0998959i 0.655393 0.755288i \(-0.272503\pi\)
−0.755288 + 0.655393i \(0.772503\pi\)
\(278\) 0 0
\(279\) 159.598i 0.572038i
\(280\) 0 0
\(281\) 183.408 0.652697 0.326348 0.945250i \(-0.394182\pi\)
0.326348 + 0.945250i \(0.394182\pi\)
\(282\) 0 0
\(283\) −333.158 + 333.158i −1.17724 + 1.17724i −0.196793 + 0.980445i \(0.563053\pi\)
−0.980445 + 0.196793i \(0.936947\pi\)
\(284\) 0 0
\(285\) 32.2979 13.6122i 0.113326 0.0477620i
\(286\) 0 0
\(287\) 314.077 + 314.077i 1.09434 + 1.09434i
\(288\) 0 0
\(289\) 56.8248i 0.196626i
\(290\) 0 0
\(291\) −190.250 −0.653781
\(292\) 0 0
\(293\) 185.884 185.884i 0.634417 0.634417i −0.314756 0.949173i \(-0.601923\pi\)
0.949173 + 0.314756i \(0.101923\pi\)
\(294\) 0 0
\(295\) −40.7266 16.5760i −0.138056 0.0561898i
\(296\) 0 0
\(297\) 62.4761 + 62.4761i 0.210357 + 0.210357i
\(298\) 0 0
\(299\) 0.462378i 0.00154642i
\(300\) 0 0
\(301\) 607.843 2.01941
\(302\) 0 0
\(303\) −60.7770 + 60.7770i −0.200584 + 0.200584i
\(304\) 0 0
\(305\) 199.535 490.251i 0.654214 1.60738i
\(306\) 0 0
\(307\) −184.175 184.175i −0.599920 0.599920i 0.340371 0.940291i \(-0.389447\pi\)
−0.940291 + 0.340371i \(0.889447\pi\)
\(308\) 0 0
\(309\) 46.0333i 0.148975i
\(310\) 0 0
\(311\) −191.522 −0.615826 −0.307913 0.951415i \(-0.599631\pi\)
−0.307913 + 0.951415i \(0.599631\pi\)
\(312\) 0 0
\(313\) −257.541 + 257.541i −0.822815 + 0.822815i −0.986511 0.163696i \(-0.947658\pi\)
0.163696 + 0.986511i \(0.447658\pi\)
\(314\) 0 0
\(315\) −49.6261 117.749i −0.157543 0.373805i
\(316\) 0 0
\(317\) −162.518 162.518i −0.512674 0.512674i 0.402671 0.915345i \(-0.368082\pi\)
−0.915345 + 0.402671i \(0.868082\pi\)
\(318\) 0 0
\(319\) 925.771i 2.90210i
\(320\) 0 0
\(321\) 169.016 0.526529
\(322\) 0 0
\(323\) −43.6054 + 43.6054i −0.135001 + 0.135001i
\(324\) 0 0
\(325\) 4.40440 0.0543296i 0.0135520 0.000167168i
\(326\) 0 0
\(327\) −159.220 159.220i −0.486911 0.486911i
\(328\) 0 0
\(329\) 161.485i 0.490837i
\(330\) 0 0
\(331\) 49.0405 0.148159 0.0740793 0.997252i \(-0.476398\pi\)
0.0740793 + 0.997252i \(0.476398\pi\)
\(332\) 0 0
\(333\) −63.8079 + 63.8079i −0.191615 + 0.191615i
\(334\) 0 0
\(335\) 305.337 128.686i 0.911453 0.384139i
\(336\) 0 0
\(337\) −17.6580 17.6580i −0.0523977 0.0523977i 0.680422 0.732820i \(-0.261796\pi\)
−0.732820 + 0.680422i \(0.761796\pi\)
\(338\) 0 0
\(339\) 386.003i 1.13865i
\(340\) 0 0
\(341\) 904.595 2.65277
\(342\) 0 0
\(343\) −153.199 + 153.199i −0.446646 + 0.446646i
\(344\) 0 0
\(345\) 21.0506 + 8.56771i 0.0610161 + 0.0248339i
\(346\) 0 0
\(347\) 296.136 + 296.136i 0.853417 + 0.853417i 0.990552 0.137135i \(-0.0437894\pi\)
−0.137135 + 0.990552i \(0.543789\pi\)
\(348\) 0 0
\(349\) 217.733i 0.623877i −0.950102 0.311939i \(-0.899022\pi\)
0.950102 0.311939i \(-0.100978\pi\)
\(350\) 0 0
\(351\) −0.915507 −0.00260828
\(352\) 0 0
\(353\) 70.0501 70.0501i 0.198442 0.198442i −0.600890 0.799332i \(-0.705187\pi\)
0.799332 + 0.600890i \(0.205187\pi\)
\(354\) 0 0
\(355\) −107.242 + 263.490i −0.302090 + 0.742224i
\(356\) 0 0
\(357\) 158.973 + 158.973i 0.445301 + 0.445301i
\(358\) 0 0
\(359\) 265.093i 0.738422i −0.929346 0.369211i \(-0.879628\pi\)
0.929346 0.369211i \(-0.120372\pi\)
\(360\) 0 0
\(361\) 344.621 0.954628
\(362\) 0 0
\(363\) −205.917 + 205.917i −0.567263 + 0.567263i
\(364\) 0 0
\(365\) −144.807 343.586i −0.396732 0.941333i
\(366\) 0 0
\(367\) −473.377 473.377i −1.28986 1.28986i −0.934872 0.354984i \(-0.884486\pi\)
−0.354984 0.934872i \(-0.615514\pi\)
\(368\) 0 0
\(369\) 156.424i 0.423914i
\(370\) 0 0
\(371\) 149.764 0.403675
\(372\) 0 0
\(373\) −201.623 + 201.623i −0.540544 + 0.540544i −0.923688 0.383144i \(-0.874841\pi\)
0.383144 + 0.923688i \(0.374841\pi\)
\(374\) 0 0
\(375\) −79.1385 + 201.524i −0.211036 + 0.537398i
\(376\) 0 0
\(377\) −6.78299 6.78299i −0.0179920 0.0179920i
\(378\) 0 0
\(379\) 230.312i 0.607684i −0.952722 0.303842i \(-0.901730\pi\)
0.952722 0.303842i \(-0.0982695\pi\)
\(380\) 0 0
\(381\) −260.301 −0.683206
\(382\) 0 0
\(383\) 312.599 312.599i 0.816185 0.816185i −0.169368 0.985553i \(-0.554173\pi\)
0.985553 + 0.169368i \(0.0541725\pi\)
\(384\) 0 0
\(385\) 667.393 281.278i 1.73349 0.730592i
\(386\) 0 0
\(387\) 151.366 + 151.366i 0.391127 + 0.391127i
\(388\) 0 0
\(389\) 555.109i 1.42702i 0.700647 + 0.713508i \(0.252895\pi\)
−0.700647 + 0.713508i \(0.747105\pi\)
\(390\) 0 0
\(391\) −39.9876 −0.102270
\(392\) 0 0
\(393\) 126.014 126.014i 0.320647 0.320647i
\(394\) 0 0
\(395\) 70.8188 + 28.8237i 0.179288 + 0.0729714i
\(396\) 0 0
\(397\) −221.888 221.888i −0.558911 0.558911i 0.370086 0.928997i \(-0.379328\pi\)
−0.928997 + 0.370086i \(0.879328\pi\)
\(398\) 0 0
\(399\) 59.7140i 0.149659i
\(400\) 0 0
\(401\) −319.629 −0.797079 −0.398540 0.917151i \(-0.630483\pi\)
−0.398540 + 0.917151i \(0.630483\pi\)
\(402\) 0 0
\(403\) −6.62784 + 6.62784i −0.0164463 + 0.0164463i
\(404\) 0 0
\(405\) 16.9640 41.6800i 0.0418865 0.102914i
\(406\) 0 0
\(407\) −361.659 361.659i −0.888598 0.888598i
\(408\) 0 0
\(409\) 40.1118i 0.0980730i −0.998797 0.0490365i \(-0.984385\pi\)
0.998797 0.0490365i \(-0.0156151\pi\)
\(410\) 0 0
\(411\) 207.491 0.504844
\(412\) 0 0
\(413\) 52.9720 52.9720i 0.128262 0.128262i
\(414\) 0 0
\(415\) 126.852 + 300.984i 0.305667 + 0.725262i
\(416\) 0 0
\(417\) −298.899 298.899i −0.716783 0.716783i
\(418\) 0 0
\(419\) 345.933i 0.825616i −0.910818 0.412808i \(-0.864548\pi\)
0.910818 0.412808i \(-0.135452\pi\)
\(420\) 0 0
\(421\) 105.186 0.249849 0.124925 0.992166i \(-0.460131\pi\)
0.124925 + 0.992166i \(0.460131\pi\)
\(422\) 0 0
\(423\) −40.2134 + 40.2134i −0.0950672 + 0.0950672i
\(424\) 0 0
\(425\) −4.69856 380.903i −0.0110554 0.896243i
\(426\) 0 0
\(427\) 637.657 + 637.657i 1.49334 + 1.49334i
\(428\) 0 0
\(429\) 5.18904i 0.0120957i
\(430\) 0 0
\(431\) −147.504 −0.342236 −0.171118 0.985251i \(-0.554738\pi\)
−0.171118 + 0.985251i \(0.554738\pi\)
\(432\) 0 0
\(433\) 202.619 202.619i 0.467942 0.467942i −0.433305 0.901247i \(-0.642653\pi\)
0.901247 + 0.433305i \(0.142653\pi\)
\(434\) 0 0
\(435\) 434.494 183.121i 0.998836 0.420967i
\(436\) 0 0
\(437\) −7.51017 7.51017i −0.0171857 0.0171857i
\(438\) 0 0
\(439\) 513.562i 1.16985i −0.811089 0.584923i \(-0.801125\pi\)
0.811089 0.584923i \(-0.198875\pi\)
\(440\) 0 0
\(441\) 70.7000 0.160317
\(442\) 0 0
\(443\) −200.016 + 200.016i −0.451503 + 0.451503i −0.895853 0.444350i \(-0.853435\pi\)
0.444350 + 0.895853i \(0.353435\pi\)
\(444\) 0 0
\(445\) 4.39278 + 1.78789i 0.00987142 + 0.00401773i
\(446\) 0 0
\(447\) −270.374 270.374i −0.604863 0.604863i
\(448\) 0 0
\(449\) 387.201i 0.862363i 0.902265 + 0.431182i \(0.141903\pi\)
−0.902265 + 0.431182i \(0.858097\pi\)
\(450\) 0 0
\(451\) −886.603 −1.96586
\(452\) 0 0
\(453\) 266.975 266.975i 0.589349 0.589349i
\(454\) 0 0
\(455\) −2.82901 + 6.95078i −0.00621761 + 0.0152764i
\(456\) 0 0
\(457\) −124.992 124.992i −0.273505 0.273505i 0.557005 0.830509i \(-0.311951\pi\)
−0.830509 + 0.557005i \(0.811951\pi\)
\(458\) 0 0
\(459\) 79.1753i 0.172495i
\(460\) 0 0
\(461\) 420.024 0.911114 0.455557 0.890207i \(-0.349440\pi\)
0.455557 + 0.890207i \(0.349440\pi\)
\(462\) 0 0
\(463\) −228.184 + 228.184i −0.492839 + 0.492839i −0.909200 0.416361i \(-0.863305\pi\)
0.416361 + 0.909200i \(0.363305\pi\)
\(464\) 0 0
\(465\) −178.932 424.555i −0.384800 0.913022i
\(466\) 0 0
\(467\) 17.4129 + 17.4129i 0.0372867 + 0.0372867i 0.725504 0.688218i \(-0.241607\pi\)
−0.688218 + 0.725504i \(0.741607\pi\)
\(468\) 0 0
\(469\) 564.522i 1.20367i
\(470\) 0 0
\(471\) −453.261 −0.962338
\(472\) 0 0
\(473\) −857.935 + 857.935i −1.81382 + 1.81382i
\(474\) 0 0
\(475\) 70.6559 72.4208i 0.148749 0.152465i
\(476\) 0 0
\(477\) 37.2944 + 37.2944i 0.0781854 + 0.0781854i
\(478\) 0 0
\(479\) 319.260i 0.666514i −0.942836 0.333257i \(-0.891852\pi\)
0.942836 0.333257i \(-0.108148\pi\)
\(480\) 0 0
\(481\) 5.29966 0.0110180
\(482\) 0 0
\(483\) −27.3799 + 27.3799i −0.0566872 + 0.0566872i
\(484\) 0 0
\(485\) −506.094 + 213.297i −1.04349 + 0.439788i
\(486\) 0 0
\(487\) 276.414 + 276.414i 0.567586 + 0.567586i 0.931452 0.363865i \(-0.118543\pi\)
−0.363865 + 0.931452i \(0.618543\pi\)
\(488\) 0 0
\(489\) 38.0315i 0.0777740i
\(490\) 0 0
\(491\) 42.5613 0.0866829 0.0433414 0.999060i \(-0.486200\pi\)
0.0433414 + 0.999060i \(0.486200\pi\)
\(492\) 0 0
\(493\) −586.610 + 586.610i −1.18988 + 1.18988i
\(494\) 0 0
\(495\) 236.240 + 96.1511i 0.477252 + 0.194245i
\(496\) 0 0
\(497\) −342.714 342.714i −0.689565 0.689565i
\(498\) 0 0
\(499\) 669.280i 1.34124i −0.741800 0.670621i \(-0.766028\pi\)
0.741800 0.670621i \(-0.233972\pi\)
\(500\) 0 0
\(501\) −52.7739 −0.105337
\(502\) 0 0
\(503\) 3.01493 3.01493i 0.00599389 0.00599389i −0.704103 0.710097i \(-0.748651\pi\)
0.710097 + 0.704103i \(0.248651\pi\)
\(504\) 0 0
\(505\) −93.5363 + 229.815i −0.185220 + 0.455080i
\(506\) 0 0
\(507\) −206.944 206.944i −0.408173 0.408173i
\(508\) 0 0
\(509\) 506.628i 0.995339i −0.867367 0.497670i \(-0.834189\pi\)
0.867367 0.497670i \(-0.165811\pi\)
\(510\) 0 0
\(511\) 635.241 1.24313
\(512\) 0 0
\(513\) −14.8701 + 14.8701i −0.0289865 + 0.0289865i
\(514\) 0 0
\(515\) −51.6098 122.455i −0.100213 0.237778i
\(516\) 0 0
\(517\) −227.927 227.927i −0.440865 0.440865i
\(518\) 0 0
\(519\) 212.079i 0.408630i
\(520\) 0 0
\(521\) 399.589 0.766966 0.383483 0.923548i \(-0.374725\pi\)
0.383483 + 0.923548i \(0.374725\pi\)
\(522\) 0 0
\(523\) −404.156 + 404.156i −0.772764 + 0.772764i −0.978589 0.205824i \(-0.934012\pi\)
0.205824 + 0.978589i \(0.434012\pi\)
\(524\) 0 0
\(525\) −264.025 257.591i −0.502905 0.490650i
\(526\) 0 0
\(527\) 573.192 + 573.192i 1.08765 + 1.08765i
\(528\) 0 0
\(529\) 522.113i 0.986981i
\(530\) 0 0
\(531\) 26.3824 0.0496844
\(532\) 0 0
\(533\) 6.49602 6.49602i 0.0121877 0.0121877i
\(534\) 0 0
\(535\) 449.607 189.490i 0.840386 0.354187i
\(536\) 0 0
\(537\) −55.6826 55.6826i −0.103692 0.103692i
\(538\) 0 0
\(539\) 400.723i 0.743457i
\(540\) 0 0
\(541\) 766.639 1.41708 0.708538 0.705672i \(-0.249355\pi\)
0.708538 + 0.705672i \(0.249355\pi\)
\(542\) 0 0
\(543\) 16.5330 16.5330i 0.0304474 0.0304474i
\(544\) 0 0
\(545\) −602.056 245.041i −1.10469 0.449616i
\(546\) 0 0
\(547\) −192.460 192.460i −0.351846 0.351846i 0.508950 0.860796i \(-0.330034\pi\)
−0.860796 + 0.508950i \(0.830034\pi\)
\(548\) 0 0
\(549\) 317.581i 0.578472i
\(550\) 0 0
\(551\) −220.345 −0.399901
\(552\) 0 0
\(553\) −92.1121 + 92.1121i −0.166568 + 0.166568i
\(554\) 0 0
\(555\) −98.2008 + 241.276i −0.176938 + 0.434731i
\(556\) 0 0
\(557\) 162.407 + 162.407i 0.291574 + 0.291574i 0.837702 0.546128i \(-0.183899\pi\)
−0.546128 + 0.837702i \(0.683899\pi\)
\(558\) 0 0
\(559\) 12.5719i 0.0224901i
\(560\) 0 0
\(561\) −448.761 −0.799931
\(562\) 0 0
\(563\) 687.682 687.682i 1.22146 1.22146i 0.254346 0.967113i \(-0.418140\pi\)
0.967113 0.254346i \(-0.0818603\pi\)
\(564\) 0 0
\(565\) −432.763 1026.82i −0.765953 1.81739i
\(566\) 0 0
\(567\) 54.2121 + 54.2121i 0.0956121 + 0.0956121i
\(568\) 0 0
\(569\) 452.621i 0.795468i −0.917501 0.397734i \(-0.869797\pi\)
0.917501 0.397734i \(-0.130203\pi\)
\(570\) 0 0
\(571\) 8.52498 0.0149299 0.00746496 0.999972i \(-0.497624\pi\)
0.00746496 + 0.999972i \(0.497624\pi\)
\(572\) 0 0
\(573\) 82.8772 82.8772i 0.144637 0.144637i
\(574\) 0 0
\(575\) 65.6032 0.809236i 0.114092 0.00140737i
\(576\) 0 0
\(577\) 271.812 + 271.812i 0.471078 + 0.471078i 0.902263 0.431186i \(-0.141905\pi\)
−0.431186 + 0.902263i \(0.641905\pi\)
\(578\) 0 0
\(579\) 78.3755i 0.135364i
\(580\) 0 0
\(581\) −556.474 −0.957787
\(582\) 0 0
\(583\) −211.383 + 211.383i −0.362577 + 0.362577i
\(584\) 0 0
\(585\) −2.43538 + 1.02641i −0.00416305 + 0.00175455i
\(586\) 0 0
\(587\) 160.042 + 160.042i 0.272644 + 0.272644i 0.830164 0.557519i \(-0.188247\pi\)
−0.557519 + 0.830164i \(0.688247\pi\)
\(588\) 0 0
\(589\) 215.305i 0.365544i
\(590\) 0 0
\(591\) 298.975 0.505881
\(592\) 0 0
\(593\) −25.3238 + 25.3238i −0.0427045 + 0.0427045i −0.728137 0.685432i \(-0.759613\pi\)
0.685432 + 0.728137i \(0.259613\pi\)
\(594\) 0 0
\(595\) 601.121 + 244.660i 1.01029 + 0.411193i
\(596\) 0 0
\(597\) 5.34469 + 5.34469i 0.00895257 + 0.00895257i
\(598\) 0 0
\(599\) 1017.30i 1.69832i 0.528132 + 0.849162i \(0.322893\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(600\) 0 0
\(601\) −322.485 −0.536580 −0.268290 0.963338i \(-0.586459\pi\)
−0.268290 + 0.963338i \(0.586459\pi\)
\(602\) 0 0
\(603\) −140.579 + 140.579i −0.233132 + 0.233132i
\(604\) 0 0
\(605\) −316.907 + 778.629i −0.523813 + 1.28699i
\(606\) 0 0
\(607\) 151.189 + 151.189i 0.249076 + 0.249076i 0.820591 0.571515i \(-0.193644\pi\)
−0.571515 + 0.820591i \(0.693644\pi\)
\(608\) 0 0
\(609\) 803.315i 1.31907i
\(610\) 0 0
\(611\) 3.33998 0.00546642
\(612\) 0 0
\(613\) −397.727 + 397.727i −0.648821 + 0.648821i −0.952708 0.303887i \(-0.901715\pi\)
0.303887 + 0.952708i \(0.401715\pi\)
\(614\) 0 0
\(615\) 175.373 + 416.111i 0.285160 + 0.676604i
\(616\) 0 0
\(617\) 657.460 + 657.460i 1.06557 + 1.06557i 0.997693 + 0.0678812i \(0.0216239\pi\)
0.0678812 + 0.997693i \(0.478376\pi\)
\(618\) 0 0
\(619\) 984.228i 1.59003i −0.606590 0.795015i \(-0.707463\pi\)
0.606590 0.795015i \(-0.292537\pi\)
\(620\) 0 0
\(621\) −13.6364 −0.0219588
\(622\) 0 0
\(623\) −5.71358 + 5.71358i −0.00917107 + 0.00917107i
\(624\) 0 0
\(625\) 15.4168 + 624.810i 0.0246669 + 0.999696i
\(626\) 0 0
\(627\) −84.2829 84.2829i −0.134422 0.134422i
\(628\) 0 0
\(629\) 458.328i 0.728661i
\(630\) 0 0
\(631\) 242.533 0.384362 0.192181 0.981359i \(-0.438444\pi\)
0.192181 + 0.981359i \(0.438444\pi\)
\(632\) 0 0
\(633\) −224.246 + 224.246i −0.354260 + 0.354260i
\(634\) 0 0
\(635\) −692.440 + 291.834i −1.09046 + 0.459581i
\(636\) 0 0
\(637\) −2.93604 2.93604i −0.00460917 0.00460917i
\(638\) 0 0
\(639\) 170.687i 0.267115i
\(640\) 0 0
\(641\) 761.727 1.18834 0.594171 0.804339i \(-0.297480\pi\)
0.594171 + 0.804339i \(0.297480\pi\)
\(642\) 0 0
\(643\) 11.3113 11.3113i 0.0175914 0.0175914i −0.698256 0.715848i \(-0.746040\pi\)
0.715848 + 0.698256i \(0.246040\pi\)
\(644\) 0 0
\(645\) 572.359 + 232.954i 0.887379 + 0.361169i
\(646\) 0 0
\(647\) 290.292 + 290.292i 0.448674 + 0.448674i 0.894914 0.446240i \(-0.147237\pi\)
−0.446240 + 0.894914i \(0.647237\pi\)
\(648\) 0 0
\(649\) 149.534i 0.230407i
\(650\) 0 0
\(651\) 784.940 1.20575
\(652\) 0 0
\(653\) −791.306 + 791.306i −1.21180 + 1.21180i −0.241368 + 0.970434i \(0.577596\pi\)
−0.970434 + 0.241368i \(0.922404\pi\)
\(654\) 0 0
\(655\) 193.937 476.496i 0.296087 0.727474i
\(656\) 0 0
\(657\) 158.189 + 158.189i 0.240775 + 0.240775i
\(658\) 0 0
\(659\) 1153.66i 1.75062i 0.483559 + 0.875312i \(0.339344\pi\)
−0.483559 + 0.875312i \(0.660656\pi\)
\(660\) 0 0
\(661\) −1250.76 −1.89222 −0.946111 0.323842i \(-0.895025\pi\)
−0.946111 + 0.323842i \(0.895025\pi\)
\(662\) 0 0
\(663\) 3.28801 3.28801i 0.00495929 0.00495929i
\(664\) 0 0
\(665\) 66.9477 + 158.848i 0.100673 + 0.238869i
\(666\) 0 0
\(667\) −101.032 101.032i −0.151472 0.151472i
\(668\) 0 0
\(669\) 12.3445i 0.0184522i
\(670\) 0 0
\(671\) −1800.03 −2.68261
\(672\) 0 0
\(673\) −320.198 + 320.198i −0.475778 + 0.475778i −0.903778 0.428001i \(-0.859218\pi\)
0.428001 + 0.903778i \(0.359218\pi\)
\(674\) 0 0
\(675\) −1.60228 129.894i −0.00237375 0.192435i
\(676\) 0 0
\(677\) −105.922 105.922i −0.156457 0.156457i 0.624538 0.780995i \(-0.285287\pi\)
−0.780995 + 0.624538i \(0.785287\pi\)
\(678\) 0 0
\(679\) 935.692i 1.37804i
\(680\) 0 0
\(681\) 554.749 0.814610
\(682\) 0 0
\(683\) 467.606 467.606i 0.684636 0.684636i −0.276405 0.961041i \(-0.589143\pi\)
0.961041 + 0.276405i \(0.0891432\pi\)
\(684\) 0 0
\(685\) 551.957 232.626i 0.805776 0.339601i
\(686\) 0 0
\(687\) 339.152 + 339.152i 0.493671 + 0.493671i
\(688\) 0 0
\(689\) 3.09754i 0.00449571i
\(690\) 0 0
\(691\) 47.2980 0.0684487 0.0342243 0.999414i \(-0.489104\pi\)
0.0342243 + 0.999414i \(0.489104\pi\)
\(692\) 0 0
\(693\) −307.271 + 307.271i −0.443392 + 0.443392i
\(694\) 0 0
\(695\) −1130.22 460.007i −1.62622 0.661881i
\(696\) 0 0
\(697\) −561.792 561.792i −0.806014 0.806014i
\(698\) 0 0
\(699\) 485.260i 0.694220i
\(700\) 0 0
\(701\) −444.721 −0.634409 −0.317204 0.948357i \(-0.602744\pi\)
−0.317204 + 0.948357i \(0.602744\pi\)
\(702\) 0 0
\(703\) 86.0796 86.0796i 0.122446 0.122446i
\(704\) 0 0
\(705\) −61.8887 + 152.058i −0.0877854 + 0.215686i
\(706\) 0 0
\(707\) −298.915 298.915i −0.422793 0.422793i
\(708\) 0 0
\(709\) 996.549i 1.40557i 0.711403 + 0.702785i \(0.248060\pi\)
−0.711403 + 0.702785i \(0.751940\pi\)
\(710\) 0 0
\(711\) −45.8759 −0.0645231
\(712\) 0 0
\(713\) −98.7212 + 98.7212i −0.138459 + 0.138459i
\(714\) 0 0
\(715\) −5.81764 13.8036i −0.00813655 0.0193057i
\(716\) 0 0
\(717\) −281.916 281.916i −0.393188 0.393188i
\(718\) 0 0
\(719\) 319.778i 0.444753i 0.974961 + 0.222377i \(0.0713814\pi\)
−0.974961 + 0.222377i \(0.928619\pi\)
\(720\) 0 0
\(721\) 226.402 0.314011
\(722\) 0 0
\(723\) −347.266 + 347.266i −0.480313 + 0.480313i
\(724\) 0 0
\(725\) 950.513 974.256i 1.31105 1.34380i
\(726\) 0 0
\(727\) 116.716 + 116.716i 0.160545 + 0.160545i 0.782808 0.622263i \(-0.213787\pi\)
−0.622263 + 0.782808i \(0.713787\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −1087.25 −1.48735
\(732\) 0 0
\(733\) 121.699 121.699i 0.166028 0.166028i −0.619203 0.785231i \(-0.712544\pi\)
0.785231 + 0.619203i \(0.212544\pi\)
\(734\) 0 0
\(735\) 188.072 79.2645i 0.255881 0.107843i
\(736\) 0 0
\(737\) −796.791 796.791i −1.08113 1.08113i
\(738\) 0 0
\(739\) 498.476i 0.674528i 0.941410 + 0.337264i \(0.109501\pi\)
−0.941410 + 0.337264i \(0.890499\pi\)
\(740\) 0 0
\(741\) 1.23506 0.00166674
\(742\) 0 0
\(743\) −13.9317 + 13.9317i −0.0187507 + 0.0187507i −0.716420 0.697669i \(-0.754221\pi\)
0.697669 + 0.716420i \(0.254221\pi\)
\(744\) 0 0
\(745\) −1022.36 416.108i −1.37230 0.558534i
\(746\) 0 0
\(747\) −138.574 138.574i −0.185508 0.185508i
\(748\) 0 0
\(749\) 831.257i 1.10982i
\(750\) 0 0
\(751\) 148.692 0.197992 0.0989962 0.995088i \(-0.468437\pi\)
0.0989962 + 0.995088i \(0.468437\pi\)
\(752\) 0 0
\(753\) −248.294 + 248.294i −0.329740 + 0.329740i
\(754\) 0 0
\(755\) 410.877 1009.51i 0.544208 1.33710i
\(756\) 0 0
\(757\) −243.978 243.978i −0.322296 0.322296i 0.527352 0.849647i \(-0.323185\pi\)
−0.849647 + 0.527352i \(0.823185\pi\)
\(758\) 0 0
\(759\) 77.2903i 0.101832i
\(760\) 0 0
\(761\) 838.059 1.10126 0.550630 0.834749i \(-0.314387\pi\)
0.550630 + 0.834749i \(0.314387\pi\)
\(762\) 0 0
\(763\) 783.079 783.079i 1.02632 1.02632i
\(764\) 0 0
\(765\) 88.7665 + 210.618i 0.116035 + 0.275318i
\(766\) 0 0
\(767\) −1.09561 1.09561i −0.00142844 0.00142844i
\(768\) 0 0
\(769\) 48.7943i 0.0634516i 0.999497 + 0.0317258i \(0.0101003\pi\)
−0.999497 + 0.0317258i \(0.989900\pi\)
\(770\) 0 0
\(771\) −495.167 −0.642240
\(772\) 0 0
\(773\) −349.857 + 349.857i −0.452596 + 0.452596i −0.896215 0.443619i \(-0.853694\pi\)
0.443619 + 0.896215i \(0.353694\pi\)
\(774\) 0 0
\(775\) −951.971 928.772i −1.22835 1.19842i
\(776\) 0 0
\(777\) −313.821 313.821i −0.403888 0.403888i
\(778\) 0 0
\(779\) 211.023i 0.270889i
\(780\) 0 0
\(781\) 967.442 1.23872
\(782\) 0 0
\(783\) −200.043 + 200.043i −0.255483 + 0.255483i
\(784\) 0 0
\(785\) −1205.74 + 508.169i −1.53598 + 0.647349i
\(786\) 0 0
\(787\) −504.294 504.294i −0.640780 0.640780i 0.309967 0.950747i \(-0.399682\pi\)
−0.950747 + 0.309967i \(0.899682\pi\)
\(788\) 0 0
\(789\) 84.2367i 0.106764i
\(790\) 0 0
\(791\) 1898.45 2.40006
\(792\) 0 0
\(793\) 13.1886 13.1886i 0.0166313 0.0166313i
\(794\) 0 0
\(795\) 141.021 + 57.3964i 0.177385 + 0.0721967i
\(796\) 0 0
\(797\) 275.451 + 275.451i 0.345610 + 0.345610i 0.858471 0.512862i \(-0.171415\pi\)
−0.512862 + 0.858471i \(0.671415\pi\)
\(798\) 0 0
\(799\) 288.850i 0.361514i
\(800\) 0 0
\(801\) −2.84561 −0.00355258
\(802\) 0 0
\(803\) −896.606 + 896.606i −1.11657 + 1.11657i
\(804\) 0 0
\(805\) −42.1379 + 103.531i −0.0523452 + 0.128610i
\(806\) 0 0
\(807\) 39.8619 + 39.8619i 0.0493951 + 0.0493951i
\(808\) 0 0
\(809\) 472.171i 0.583648i 0.956472 + 0.291824i \(0.0942621\pi\)
−0.956472 + 0.291824i \(0.905738\pi\)
\(810\) 0 0
\(811\) 1383.85 1.70636 0.853178 0.521620i \(-0.174672\pi\)
0.853178 + 0.521620i \(0.174672\pi\)
\(812\) 0 0
\(813\) −112.614 + 112.614i −0.138517 + 0.138517i
\(814\) 0 0
\(815\) −42.6386 101.169i −0.0523173 0.124134i
\(816\) 0 0
\(817\) −204.200 204.200i −0.249938 0.249938i
\(818\) 0 0
\(819\) 4.50266i 0.00549776i
\(820\) 0 0
\(821\) 280.480 0.341632 0.170816 0.985303i \(-0.445360\pi\)
0.170816 + 0.985303i \(0.445360\pi\)
\(822\) 0 0
\(823\) −256.396 + 256.396i −0.311539 + 0.311539i −0.845505 0.533967i \(-0.820701\pi\)
0.533967 + 0.845505i \(0.320701\pi\)
\(824\) 0 0
\(825\) 736.231 9.08164i 0.892402 0.0110081i
\(826\) 0 0
\(827\) 325.679 + 325.679i 0.393808 + 0.393808i 0.876042 0.482234i \(-0.160175\pi\)
−0.482234 + 0.876042i \(0.660175\pi\)
\(828\) 0 0
\(829\) 5.87954i 0.00709232i 0.999994 + 0.00354616i \(0.00112878\pi\)
−0.999994 + 0.00354616i \(0.998871\pi\)
\(830\) 0 0
\(831\) 67.7803 0.0815647
\(832\) 0 0
\(833\) −253.916 + 253.916i −0.304822 + 0.304822i
\(834\) 0 0
\(835\) −140.386 + 59.1669i −0.168127 + 0.0708585i
\(836\) 0 0
\(837\) 195.467 + 195.467i 0.233533 + 0.233533i
\(838\) 0 0
\(839\) 141.023i 0.168085i −0.996462 0.0840424i \(-0.973217\pi\)
0.996462 0.0840424i \(-0.0267831\pi\)
\(840\) 0 0
\(841\) −2123.24 −2.52466
\(842\) 0 0
\(843\) −224.628 + 224.628i −0.266462 + 0.266462i
\(844\) 0 0
\(845\) −782.514 318.488i −0.926052 0.376909i
\(846\) 0 0
\(847\) −1012.74 1012.74i −1.19568 1.19568i
\(848\) 0 0
\(849\) 816.068i 0.961211i
\(850\) 0 0
\(851\) 78.9380 0.0927591
\(852\) 0 0
\(853\) 322.940 322.940i 0.378593 0.378593i −0.492002 0.870594i \(-0.663735\pi\)
0.870594 + 0.492002i \(0.163735\pi\)
\(854\) 0 0
\(855\) −22.8852 + 56.2281i −0.0267663 + 0.0657639i
\(856\) 0 0
\(857\) 277.382 + 277.382i 0.323667 + 0.323667i 0.850172 0.526505i \(-0.176498\pi\)
−0.526505 + 0.850172i \(0.676498\pi\)
\(858\) 0 0
\(859\) 530.257i 0.617295i 0.951176 + 0.308648i \(0.0998764\pi\)
−0.951176 + 0.308648i \(0.900124\pi\)
\(860\) 0 0
\(861\) −769.328 −0.893529
\(862\) 0 0
\(863\) 725.484 725.484i 0.840653 0.840653i −0.148291 0.988944i \(-0.547377\pi\)
0.988944 + 0.148291i \(0.0473772\pi\)
\(864\) 0 0
\(865\) −237.770 564.161i −0.274878 0.652209i
\(866\) 0 0
\(867\) 69.5959 + 69.5959i 0.0802721 + 0.0802721i
\(868\) 0 0
\(869\) 260.022i 0.299220i
\(870\) 0 0
\(871\) 11.6760 0.0134052
\(872\) 0 0
\(873\) 233.008 233.008i 0.266905 0.266905i
\(874\) 0 0
\(875\) −991.141 389.221i −1.13273 0.444824i
\(876\) 0 0
\(877\) −114.761 114.761i −0.130856 0.130856i 0.638645 0.769501i \(-0.279495\pi\)
−0.769501 + 0.638645i \(0.779495\pi\)
\(878\) 0 0
\(879\) 455.321i 0.517999i
\(880\) 0 0
\(881\) −582.431 −0.661102 −0.330551 0.943788i \(-0.607235\pi\)
−0.330551 + 0.943788i \(0.607235\pi\)
\(882\) 0 0
\(883\) 1140.67 1140.67i 1.29182 1.29182i 0.358153 0.933663i \(-0.383406\pi\)
0.933663 0.358153i \(-0.116594\pi\)
\(884\) 0 0
\(885\) 70.1810 29.5783i 0.0793006 0.0334218i
\(886\) 0 0
\(887\) 910.472 + 910.472i 1.02646 + 1.02646i 0.999640 + 0.0268221i \(0.00853875\pi\)
0.0268221 + 0.999640i \(0.491461\pi\)
\(888\) 0 0
\(889\) 1280.22i 1.44007i
\(890\) 0 0
\(891\) −153.034 −0.171756
\(892\) 0 0
\(893\) 54.2496 54.2496i 0.0607498 0.0607498i
\(894\) 0 0
\(895\) −210.552 85.6960i −0.235253 0.0957497i
\(896\) 0 0
\(897\) 0.566296 + 0.566296i 0.000631322 + 0.000631322i
\(898\) 0 0
\(899\) 2896.44i 3.22184i
\(900\) 0 0
\(901\) −267.883 −0.297318
\(902\) 0 0
\(903\) −744.453 + 744.453i −0.824421 + 0.824421i
\(904\) 0 0
\(905\) 25.4443 62.5158i 0.0281153 0.0690783i
\(906\) 0 0
\(907\) −928.527 928.527i −1.02373 1.02373i −0.999711 0.0240232i \(-0.992352\pi\)
−0.0240232 0.999711i \(-0.507648\pi\)
\(908\) 0 0
\(909\) 148.873i 0.163776i
\(910\) 0 0
\(911\) −751.939 −0.825400 −0.412700 0.910867i \(-0.635414\pi\)
−0.412700 + 0.910867i \(0.635414\pi\)
\(912\) 0 0
\(913\) 785.431 785.431i 0.860275 0.860275i
\(914\) 0 0
\(915\) 356.053 + 844.813i 0.389129 + 0.923292i
\(916\) 0 0
\(917\) 619.766 + 619.766i 0.675862 + 0.675862i
\(918\) 0 0
\(919\) 612.491i 0.666476i −0.942843 0.333238i \(-0.891859\pi\)
0.942843 0.333238i \(-0.108141\pi\)
\(920\) 0 0
\(921\) 451.136 0.489833
\(922\) 0 0
\(923\) −7.08831 + 7.08831i −0.00767965 + 0.00767965i
\(924\) 0 0
\(925\) 9.27524 + 751.926i 0.0100273 + 0.812893i
\(926\) 0 0
\(927\) 56.3791 + 56.3791i 0.0608189 + 0.0608189i
\(928\) 0 0
\(929\) 487.299i 0.524541i −0.964994 0.262271i \(-0.915529\pi\)
0.964994 0.262271i \(-0.0844713\pi\)
\(930\) 0 0
\(931\) −95.3773 −0.102446
\(932\) 0 0
\(933\) 234.565 234.565i 0.251410 0.251410i
\(934\) 0 0
\(935\) −1193.77 + 503.124i −1.27676 + 0.538100i
\(936\) 0 0
\(937\) 943.521 + 943.521i 1.00696 + 1.00696i 0.999976 + 0.00698356i \(0.00222296\pi\)
0.00698356 + 0.999976i \(0.497777\pi\)
\(938\) 0 0
\(939\) 630.844i 0.671826i
\(940\) 0 0
\(941\) −243.515 −0.258784 −0.129392 0.991594i \(-0.541302\pi\)
−0.129392 + 0.991594i \(0.541302\pi\)
\(942\) 0 0
\(943\) 96.7577 96.7577i 0.102606 0.102606i
\(944\) 0 0
\(945\) 204.991 + 83.4328i 0.216922 + 0.0882887i
\(946\) 0 0
\(947\) 792.978 + 792.978i 0.837358 + 0.837358i 0.988510 0.151153i \(-0.0482985\pi\)
−0.151153 + 0.988510i \(0.548299\pi\)
\(948\) 0 0
\(949\) 13.1386i 0.0138447i
\(950\) 0 0
\(951\) 398.085 0.418596
\(952\) 0 0
\(953\) −77.6634 + 77.6634i −0.0814936 + 0.0814936i −0.746679 0.665185i \(-0.768353\pi\)
0.665185 + 0.746679i \(0.268353\pi\)
\(954\) 0 0
\(955\) 127.549 313.383i 0.133559 0.328149i
\(956\) 0 0
\(957\) −1133.83 1133.83i −1.18478 1.18478i
\(958\) 0 0
\(959\) 1020.49i 1.06412i
\(960\) 0 0
\(961\) 1869.19 1.94504
\(962\) 0 0
\(963\) −207.001 + 207.001i −0.214954 + 0.214954i
\(964\) 0 0
\(965\) 87.8699 + 208.490i 0.0910569 + 0.216052i
\(966\) 0 0
\(967\) −294.078 294.078i −0.304113 0.304113i 0.538507 0.842621i \(-0.318988\pi\)
−0.842621 + 0.538507i \(0.818988\pi\)
\(968\) 0 0
\(969\) 106.811i 0.110228i
\(970\) 0 0
\(971\) −322.263 −0.331888 −0.165944 0.986135i \(-0.553067\pi\)
−0.165944 + 0.986135i \(0.553067\pi\)
\(972\) 0 0
\(973\) 1470.05 1470.05i 1.51084 1.51084i
\(974\) 0 0
\(975\) −5.32773 + 5.46081i −0.00546433 + 0.00560083i
\(976\) 0 0
\(977\) 739.522 + 739.522i 0.756932 + 0.756932i 0.975763 0.218831i \(-0.0702243\pi\)
−0.218831 + 0.975763i \(0.570224\pi\)
\(978\) 0 0
\(979\) 16.1288i 0.0164747i
\(980\) 0 0
\(981\) 390.008 0.397561
\(982\) 0 0
\(983\) 767.218 767.218i 0.780486 0.780486i −0.199427 0.979913i \(-0.563908\pi\)
0.979913 + 0.199427i \(0.0639080\pi\)
\(984\) 0 0
\(985\) 795.319 335.193i 0.807430 0.340298i
\(986\) 0 0
\(987\) −197.778 197.778i −0.200383 0.200383i
\(988\) 0 0
\(989\) 187.258i 0.189341i
\(990\) 0 0
\(991\) −908.418 −0.916668 −0.458334 0.888780i \(-0.651554\pi\)
−0.458334 + 0.888780i \(0.651554\pi\)
\(992\) 0 0
\(993\) −60.0621 + 60.0621i −0.0604855 + 0.0604855i
\(994\) 0 0
\(995\) 20.2098 + 8.22551i 0.0203113 + 0.00826685i
\(996\) 0 0
\(997\) 397.062 + 397.062i 0.398257 + 0.398257i 0.877618 0.479361i \(-0.159132\pi\)
−0.479361 + 0.877618i \(0.659132\pi\)
\(998\) 0 0
\(999\) 156.297i 0.156453i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.3.bg.k.577.1 8
4.3 odd 2 960.3.bg.l.577.3 8
5.3 odd 4 inner 960.3.bg.k.193.1 8
8.3 odd 2 120.3.u.b.97.2 yes 8
8.5 even 2 240.3.bg.e.97.4 8
20.3 even 4 960.3.bg.l.193.3 8
24.5 odd 2 720.3.bh.o.577.1 8
24.11 even 2 360.3.v.f.217.1 8
40.3 even 4 120.3.u.b.73.2 8
40.13 odd 4 240.3.bg.e.193.4 8
40.19 odd 2 600.3.u.h.457.3 8
40.27 even 4 600.3.u.h.193.3 8
40.29 even 2 1200.3.bg.q.1057.2 8
40.37 odd 4 1200.3.bg.q.193.2 8
120.53 even 4 720.3.bh.o.433.1 8
120.59 even 2 1800.3.v.t.1657.2 8
120.83 odd 4 360.3.v.f.73.1 8
120.107 odd 4 1800.3.v.t.793.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.u.b.73.2 8 40.3 even 4
120.3.u.b.97.2 yes 8 8.3 odd 2
240.3.bg.e.97.4 8 8.5 even 2
240.3.bg.e.193.4 8 40.13 odd 4
360.3.v.f.73.1 8 120.83 odd 4
360.3.v.f.217.1 8 24.11 even 2
600.3.u.h.193.3 8 40.27 even 4
600.3.u.h.457.3 8 40.19 odd 2
720.3.bh.o.433.1 8 120.53 even 4
720.3.bh.o.577.1 8 24.5 odd 2
960.3.bg.k.193.1 8 5.3 odd 4 inner
960.3.bg.k.577.1 8 1.1 even 1 trivial
960.3.bg.l.193.3 8 20.3 even 4
960.3.bg.l.577.3 8 4.3 odd 2
1200.3.bg.q.193.2 8 40.37 odd 4
1200.3.bg.q.1057.2 8 40.29 even 2
1800.3.v.t.793.2 8 120.107 odd 4
1800.3.v.t.1657.2 8 120.59 even 2