Properties

Label 120.3.u.b.73.2
Level $120$
Weight $3$
Character 120.73
Analytic conductor $3.270$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,3,Mod(73,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 120.u (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.26976317232\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} + 269x^{4} - 1116x^{3} + 2312x^{2} + 680x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.2
Root \(-2.88489 + 2.88489i\) of defining polynomial
Character \(\chi\) \(=\) 120.73
Dual form 120.3.u.b.97.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 1.22474i) q^{3} +(1.88489 + 4.63111i) q^{5} +(6.02356 - 6.02356i) q^{7} +3.00000i q^{9} +O(q^{10})\) \(q+(-1.22474 - 1.22474i) q^{3} +(1.88489 + 4.63111i) q^{5} +(6.02356 - 6.02356i) q^{7} +3.00000i q^{9} +17.0038 q^{11} +(0.124585 + 0.124585i) q^{13} +(3.36342 - 7.98044i) q^{15} +(10.7744 - 10.7744i) q^{17} -4.04713i q^{19} -14.7547 q^{21} +(1.85568 + 1.85568i) q^{23} +(-17.8944 + 17.4583i) q^{25} +(3.67423 - 3.67423i) q^{27} +54.4448i q^{29} -53.1995 q^{31} +(-20.8254 - 20.8254i) q^{33} +(39.2496 + 16.5420i) q^{35} +(21.2693 - 21.2693i) q^{37} -0.305169i q^{39} -52.1414 q^{41} +(-50.4554 - 50.4554i) q^{43} +(-13.8933 + 5.65467i) q^{45} +(13.4045 - 13.4045i) q^{47} -23.5667i q^{49} -26.3918 q^{51} +(12.4315 + 12.4315i) q^{53} +(32.0504 + 78.7466i) q^{55} +(-4.95670 + 4.95670i) q^{57} -8.79413i q^{59} +105.860 q^{61} +(18.0707 + 18.0707i) q^{63} +(-0.342137 + 0.811794i) q^{65} +(-46.8595 + 46.8595i) q^{67} -4.54547i q^{69} -56.8955 q^{71} +(-52.7296 - 52.7296i) q^{73} +(43.2980 + 0.534094i) q^{75} +(102.424 - 102.424i) q^{77} -15.2920i q^{79} -9.00000 q^{81} +(46.1914 + 46.1914i) q^{83} +(70.2060 + 29.5888i) q^{85} +(66.6810 - 66.6810i) q^{87} +0.948538i q^{89} +1.50089 q^{91} +(65.1558 + 65.1558i) q^{93} +(18.7427 - 7.62840i) q^{95} +(77.6693 - 77.6693i) q^{97} +51.0115i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 12 q^{5} + 4 q^{7} + 32 q^{11} - 4 q^{13} + 52 q^{17} - 24 q^{21} - 40 q^{23} - 84 q^{25} + 96 q^{31} + 60 q^{33} + 24 q^{35} - 60 q^{37} - 152 q^{41} - 88 q^{43} - 16 q^{47} - 168 q^{51} + 108 q^{53} + 116 q^{55} - 24 q^{57} + 264 q^{61} + 12 q^{63} + 164 q^{65} - 216 q^{67} - 240 q^{71} - 208 q^{73} + 120 q^{75} + 168 q^{77} - 72 q^{81} + 336 q^{83} - 12 q^{85} + 252 q^{87} + 592 q^{91} + 264 q^{93} - 128 q^{95} - 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 1.22474i −0.408248 0.408248i
\(4\) 0 0
\(5\) 1.88489 + 4.63111i 0.376978 + 0.926222i
\(6\) 0 0
\(7\) 6.02356 6.02356i 0.860509 0.860509i −0.130888 0.991397i \(-0.541783\pi\)
0.991397 + 0.130888i \(0.0417828\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 17.0038 1.54580 0.772901 0.634526i \(-0.218805\pi\)
0.772901 + 0.634526i \(0.218805\pi\)
\(12\) 0 0
\(13\) 0.124585 + 0.124585i 0.00958344 + 0.00958344i 0.711882 0.702299i \(-0.247843\pi\)
−0.702299 + 0.711882i \(0.747843\pi\)
\(14\) 0 0
\(15\) 3.36342 7.98044i 0.224228 0.532029i
\(16\) 0 0
\(17\) 10.7744 10.7744i 0.633788 0.633788i −0.315228 0.949016i \(-0.602081\pi\)
0.949016 + 0.315228i \(0.102081\pi\)
\(18\) 0 0
\(19\) 4.04713i 0.213007i −0.994312 0.106503i \(-0.966035\pi\)
0.994312 0.106503i \(-0.0339655\pi\)
\(20\) 0 0
\(21\) −14.7547 −0.702603
\(22\) 0 0
\(23\) 1.85568 + 1.85568i 0.0806817 + 0.0806817i 0.746296 0.665614i \(-0.231830\pi\)
−0.665614 + 0.746296i \(0.731830\pi\)
\(24\) 0 0
\(25\) −17.8944 + 17.4583i −0.715775 + 0.698331i
\(26\) 0 0
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 0 0
\(29\) 54.4448i 1.87741i 0.344724 + 0.938704i \(0.387972\pi\)
−0.344724 + 0.938704i \(0.612028\pi\)
\(30\) 0 0
\(31\) −53.1995 −1.71611 −0.858056 0.513556i \(-0.828328\pi\)
−0.858056 + 0.513556i \(0.828328\pi\)
\(32\) 0 0
\(33\) −20.8254 20.8254i −0.631071 0.631071i
\(34\) 0 0
\(35\) 39.2496 + 16.5420i 1.12142 + 0.472629i
\(36\) 0 0
\(37\) 21.2693 21.2693i 0.574846 0.574846i −0.358633 0.933479i \(-0.616757\pi\)
0.933479 + 0.358633i \(0.116757\pi\)
\(38\) 0 0
\(39\) 0.305169i 0.00782484i
\(40\) 0 0
\(41\) −52.1414 −1.27174 −0.635871 0.771796i \(-0.719359\pi\)
−0.635871 + 0.771796i \(0.719359\pi\)
\(42\) 0 0
\(43\) −50.4554 50.4554i −1.17338 1.17338i −0.981398 0.191984i \(-0.938508\pi\)
−0.191984 0.981398i \(-0.561492\pi\)
\(44\) 0 0
\(45\) −13.8933 + 5.65467i −0.308741 + 0.125659i
\(46\) 0 0
\(47\) 13.4045 13.4045i 0.285201 0.285201i −0.549978 0.835179i \(-0.685364\pi\)
0.835179 + 0.549978i \(0.185364\pi\)
\(48\) 0 0
\(49\) 23.5667i 0.480952i
\(50\) 0 0
\(51\) −26.3918 −0.517486
\(52\) 0 0
\(53\) 12.4315 + 12.4315i 0.234556 + 0.234556i 0.814591 0.580035i \(-0.196961\pi\)
−0.580035 + 0.814591i \(0.696961\pi\)
\(54\) 0 0
\(55\) 32.0504 + 78.7466i 0.582734 + 1.43176i
\(56\) 0 0
\(57\) −4.95670 + 4.95670i −0.0869596 + 0.0869596i
\(58\) 0 0
\(59\) 8.79413i 0.149053i −0.997219 0.0745265i \(-0.976255\pi\)
0.997219 0.0745265i \(-0.0237445\pi\)
\(60\) 0 0
\(61\) 105.860 1.73542 0.867708 0.497074i \(-0.165592\pi\)
0.867708 + 0.497074i \(0.165592\pi\)
\(62\) 0 0
\(63\) 18.0707 + 18.0707i 0.286836 + 0.286836i
\(64\) 0 0
\(65\) −0.342137 + 0.811794i −0.00526364 + 0.0124891i
\(66\) 0 0
\(67\) −46.8595 + 46.8595i −0.699396 + 0.699396i −0.964280 0.264885i \(-0.914666\pi\)
0.264885 + 0.964280i \(0.414666\pi\)
\(68\) 0 0
\(69\) 4.54547i 0.0658763i
\(70\) 0 0
\(71\) −56.8955 −0.801346 −0.400673 0.916221i \(-0.631224\pi\)
−0.400673 + 0.916221i \(0.631224\pi\)
\(72\) 0 0
\(73\) −52.7296 52.7296i −0.722324 0.722324i 0.246754 0.969078i \(-0.420636\pi\)
−0.969078 + 0.246754i \(0.920636\pi\)
\(74\) 0 0
\(75\) 43.2980 + 0.534094i 0.577306 + 0.00712125i
\(76\) 0 0
\(77\) 102.424 102.424i 1.33018 1.33018i
\(78\) 0 0
\(79\) 15.2920i 0.193569i −0.995305 0.0967846i \(-0.969144\pi\)
0.995305 0.0967846i \(-0.0308558\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) 46.1914 + 46.1914i 0.556523 + 0.556523i 0.928316 0.371792i \(-0.121257\pi\)
−0.371792 + 0.928316i \(0.621257\pi\)
\(84\) 0 0
\(85\) 70.2060 + 29.5888i 0.825953 + 0.348104i
\(86\) 0 0
\(87\) 66.6810 66.6810i 0.766449 0.766449i
\(88\) 0 0
\(89\) 0.948538i 0.0106577i 0.999986 + 0.00532886i \(0.00169624\pi\)
−0.999986 + 0.00532886i \(0.998304\pi\)
\(90\) 0 0
\(91\) 1.50089 0.0164933
\(92\) 0 0
\(93\) 65.1558 + 65.1558i 0.700600 + 0.700600i
\(94\) 0 0
\(95\) 18.7427 7.62840i 0.197292 0.0802989i
\(96\) 0 0
\(97\) 77.6693 77.6693i 0.800715 0.800715i −0.182492 0.983207i \(-0.558417\pi\)
0.983207 + 0.182492i \(0.0584165\pi\)
\(98\) 0 0
\(99\) 51.0115i 0.515268i
\(100\) 0 0
\(101\) −49.6243 −0.491329 −0.245665 0.969355i \(-0.579006\pi\)
−0.245665 + 0.969355i \(0.579006\pi\)
\(102\) 0 0
\(103\) 18.7930 + 18.7930i 0.182457 + 0.182457i 0.792425 0.609969i \(-0.208818\pi\)
−0.609969 + 0.792425i \(0.708818\pi\)
\(104\) 0 0
\(105\) −27.8109 68.3305i −0.264866 0.650766i
\(106\) 0 0
\(107\) −69.0004 + 69.0004i −0.644863 + 0.644863i −0.951747 0.306884i \(-0.900714\pi\)
0.306884 + 0.951747i \(0.400714\pi\)
\(108\) 0 0
\(109\) 130.003i 1.19268i 0.802730 + 0.596342i \(0.203380\pi\)
−0.802730 + 0.596342i \(0.796620\pi\)
\(110\) 0 0
\(111\) −52.0989 −0.469360
\(112\) 0 0
\(113\) −157.585 157.585i −1.39456 1.39456i −0.814760 0.579799i \(-0.803131\pi\)
−0.579799 0.814760i \(-0.696869\pi\)
\(114\) 0 0
\(115\) −5.09610 + 12.0916i −0.0443139 + 0.105144i
\(116\) 0 0
\(117\) −0.373754 + 0.373754i −0.00319448 + 0.00319448i
\(118\) 0 0
\(119\) 129.801i 1.09076i
\(120\) 0 0
\(121\) 168.130 1.38951
\(122\) 0 0
\(123\) 63.8599 + 63.8599i 0.519186 + 0.519186i
\(124\) 0 0
\(125\) −114.580 49.9638i −0.916641 0.399711i
\(126\) 0 0
\(127\) −106.268 + 106.268i −0.836753 + 0.836753i −0.988430 0.151677i \(-0.951533\pi\)
0.151677 + 0.988430i \(0.451533\pi\)
\(128\) 0 0
\(129\) 123.590i 0.958062i
\(130\) 0 0
\(131\) −102.890 −0.785421 −0.392711 0.919662i \(-0.628463\pi\)
−0.392711 + 0.919662i \(0.628463\pi\)
\(132\) 0 0
\(133\) −24.3781 24.3781i −0.183294 0.183294i
\(134\) 0 0
\(135\) 23.9413 + 10.0903i 0.177343 + 0.0747426i
\(136\) 0 0
\(137\) −84.7079 + 84.7079i −0.618306 + 0.618306i −0.945097 0.326791i \(-0.894033\pi\)
0.326791 + 0.945097i \(0.394033\pi\)
\(138\) 0 0
\(139\) 244.050i 1.75575i −0.478887 0.877877i \(-0.658960\pi\)
0.478887 0.877877i \(-0.341040\pi\)
\(140\) 0 0
\(141\) −32.8341 −0.232866
\(142\) 0 0
\(143\) 2.11842 + 2.11842i 0.0148141 + 0.0148141i
\(144\) 0 0
\(145\) −252.140 + 102.623i −1.73890 + 0.707742i
\(146\) 0 0
\(147\) −28.8631 + 28.8631i −0.196348 + 0.196348i
\(148\) 0 0
\(149\) 220.759i 1.48161i 0.671722 + 0.740803i \(0.265555\pi\)
−0.671722 + 0.740803i \(0.734445\pi\)
\(150\) 0 0
\(151\) 217.984 1.44360 0.721802 0.692099i \(-0.243314\pi\)
0.721802 + 0.692099i \(0.243314\pi\)
\(152\) 0 0
\(153\) 32.3232 + 32.3232i 0.211263 + 0.211263i
\(154\) 0 0
\(155\) −100.275 246.373i −0.646937 1.58950i
\(156\) 0 0
\(157\) −185.043 + 185.043i −1.17862 + 1.17862i −0.198522 + 0.980096i \(0.563614\pi\)
−0.980096 + 0.198522i \(0.936386\pi\)
\(158\) 0 0
\(159\) 30.4508i 0.191514i
\(160\) 0 0
\(161\) 22.3556 0.138855
\(162\) 0 0
\(163\) −15.5263 15.5263i −0.0952533 0.0952533i 0.657874 0.753128i \(-0.271456\pi\)
−0.753128 + 0.657874i \(0.771456\pi\)
\(164\) 0 0
\(165\) 57.1910 135.698i 0.346612 0.822412i
\(166\) 0 0
\(167\) −21.5448 + 21.5448i −0.129011 + 0.129011i −0.768664 0.639653i \(-0.779078\pi\)
0.639653 + 0.768664i \(0.279078\pi\)
\(168\) 0 0
\(169\) 168.969i 0.999816i
\(170\) 0 0
\(171\) 12.1414 0.0710023
\(172\) 0 0
\(173\) 86.5808 + 86.5808i 0.500467 + 0.500467i 0.911583 0.411116i \(-0.134861\pi\)
−0.411116 + 0.911583i \(0.634861\pi\)
\(174\) 0 0
\(175\) −2.62679 + 212.949i −0.0150102 + 1.21685i
\(176\) 0 0
\(177\) −10.7706 + 10.7706i −0.0608507 + 0.0608507i
\(178\) 0 0
\(179\) 45.4647i 0.253993i −0.991903 0.126996i \(-0.959466\pi\)
0.991903 0.126996i \(-0.0405336\pi\)
\(180\) 0 0
\(181\) 13.4991 0.0745807 0.0372903 0.999304i \(-0.488127\pi\)
0.0372903 + 0.999304i \(0.488127\pi\)
\(182\) 0 0
\(183\) −129.652 129.652i −0.708481 0.708481i
\(184\) 0 0
\(185\) 138.591 + 58.4101i 0.749139 + 0.315730i
\(186\) 0 0
\(187\) 183.206 183.206i 0.979711 0.979711i
\(188\) 0 0
\(189\) 44.2640i 0.234201i
\(190\) 0 0
\(191\) 67.6690 0.354288 0.177144 0.984185i \(-0.443314\pi\)
0.177144 + 0.984185i \(0.443314\pi\)
\(192\) 0 0
\(193\) 31.9967 + 31.9967i 0.165786 + 0.165786i 0.785124 0.619338i \(-0.212599\pi\)
−0.619338 + 0.785124i \(0.712599\pi\)
\(194\) 0 0
\(195\) 1.41327 0.575210i 0.00724754 0.00294980i
\(196\) 0 0
\(197\) 122.056 122.056i 0.619575 0.619575i −0.325848 0.945422i \(-0.605650\pi\)
0.945422 + 0.325848i \(0.105650\pi\)
\(198\) 0 0
\(199\) 4.36392i 0.0219292i −0.999940 0.0109646i \(-0.996510\pi\)
0.999940 0.0109646i \(-0.00349022\pi\)
\(200\) 0 0
\(201\) 114.782 0.571054
\(202\) 0 0
\(203\) 327.952 + 327.952i 1.61553 + 1.61553i
\(204\) 0 0
\(205\) −98.2809 241.473i −0.479419 1.17791i
\(206\) 0 0
\(207\) −5.56704 + 5.56704i −0.0268939 + 0.0268939i
\(208\) 0 0
\(209\) 68.8167i 0.329266i
\(210\) 0 0
\(211\) 183.096 0.867756 0.433878 0.900972i \(-0.357145\pi\)
0.433878 + 0.900972i \(0.357145\pi\)
\(212\) 0 0
\(213\) 69.6825 + 69.6825i 0.327148 + 0.327148i
\(214\) 0 0
\(215\) 138.562 328.768i 0.644473 1.52915i
\(216\) 0 0
\(217\) −320.451 + 320.451i −1.47673 + 1.47673i
\(218\) 0 0
\(219\) 129.161i 0.589775i
\(220\) 0 0
\(221\) 2.68465 0.0121477
\(222\) 0 0
\(223\) −5.03964 5.03964i −0.0225993 0.0225993i 0.695717 0.718316i \(-0.255087\pi\)
−0.718316 + 0.695717i \(0.755087\pi\)
\(224\) 0 0
\(225\) −52.3748 53.6831i −0.232777 0.238592i
\(226\) 0 0
\(227\) −226.475 + 226.475i −0.997689 + 0.997689i −0.999997 0.00230792i \(-0.999265\pi\)
0.00230792 + 0.999997i \(0.499265\pi\)
\(228\) 0 0
\(229\) 276.917i 1.20924i −0.796513 0.604621i \(-0.793324\pi\)
0.796513 0.604621i \(-0.206676\pi\)
\(230\) 0 0
\(231\) −250.886 −1.08609
\(232\) 0 0
\(233\) 198.106 + 198.106i 0.850242 + 0.850242i 0.990163 0.139921i \(-0.0446847\pi\)
−0.139921 + 0.990163i \(0.544685\pi\)
\(234\) 0 0
\(235\) 87.3435 + 36.8116i 0.371675 + 0.156645i
\(236\) 0 0
\(237\) −18.7288 + 18.7288i −0.0790243 + 0.0790243i
\(238\) 0 0
\(239\) 230.183i 0.963111i 0.876416 + 0.481555i \(0.159928\pi\)
−0.876416 + 0.481555i \(0.840072\pi\)
\(240\) 0 0
\(241\) 283.542 1.17652 0.588261 0.808671i \(-0.299813\pi\)
0.588261 + 0.808671i \(0.299813\pi\)
\(242\) 0 0
\(243\) 11.0227 + 11.0227i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 109.140 44.4206i 0.445468 0.181308i
\(246\) 0 0
\(247\) 0.504210 0.504210i 0.00204134 0.00204134i
\(248\) 0 0
\(249\) 113.145i 0.454400i
\(250\) 0 0
\(251\) 202.731 0.807694 0.403847 0.914826i \(-0.367673\pi\)
0.403847 + 0.914826i \(0.367673\pi\)
\(252\) 0 0
\(253\) 31.5536 + 31.5536i 0.124718 + 0.124718i
\(254\) 0 0
\(255\) −49.7456 122.223i −0.195081 0.479307i
\(256\) 0 0
\(257\) 202.151 202.151i 0.786580 0.786580i −0.194352 0.980932i \(-0.562260\pi\)
0.980932 + 0.194352i \(0.0622604\pi\)
\(258\) 0 0
\(259\) 256.234i 0.989320i
\(260\) 0 0
\(261\) −163.334 −0.625803
\(262\) 0 0
\(263\) −34.3895 34.3895i −0.130759 0.130759i 0.638699 0.769457i \(-0.279473\pi\)
−0.769457 + 0.638699i \(0.779473\pi\)
\(264\) 0 0
\(265\) −34.1395 + 81.0035i −0.128828 + 0.305674i
\(266\) 0 0
\(267\) 1.16172 1.16172i 0.00435100 0.00435100i
\(268\) 0 0
\(269\) 32.5471i 0.120993i −0.998168 0.0604964i \(-0.980732\pi\)
0.998168 0.0604964i \(-0.0192684\pi\)
\(270\) 0 0
\(271\) −91.9490 −0.339295 −0.169648 0.985505i \(-0.554263\pi\)
−0.169648 + 0.985505i \(0.554263\pi\)
\(272\) 0 0
\(273\) −1.83820 1.83820i −0.00673335 0.00673335i
\(274\) 0 0
\(275\) −304.273 + 296.858i −1.10645 + 1.07948i
\(276\) 0 0
\(277\) 27.6712 27.6712i 0.0998959 0.0998959i −0.655393 0.755288i \(-0.727497\pi\)
0.755288 + 0.655393i \(0.227497\pi\)
\(278\) 0 0
\(279\) 159.598i 0.572038i
\(280\) 0 0
\(281\) 183.408 0.652697 0.326348 0.945250i \(-0.394182\pi\)
0.326348 + 0.945250i \(0.394182\pi\)
\(282\) 0 0
\(283\) −333.158 333.158i −1.17724 1.17724i −0.980445 0.196793i \(-0.936947\pi\)
−0.196793 0.980445i \(-0.563053\pi\)
\(284\) 0 0
\(285\) −32.2979 13.6122i −0.113326 0.0477620i
\(286\) 0 0
\(287\) −314.077 + 314.077i −1.09434 + 1.09434i
\(288\) 0 0
\(289\) 56.8248i 0.196626i
\(290\) 0 0
\(291\) −190.250 −0.653781
\(292\) 0 0
\(293\) −185.884 185.884i −0.634417 0.634417i 0.314756 0.949173i \(-0.398077\pi\)
−0.949173 + 0.314756i \(0.898077\pi\)
\(294\) 0 0
\(295\) 40.7266 16.5760i 0.138056 0.0561898i
\(296\) 0 0
\(297\) 62.4761 62.4761i 0.210357 0.210357i
\(298\) 0 0
\(299\) 0.462378i 0.00154642i
\(300\) 0 0
\(301\) −607.843 −2.01941
\(302\) 0 0
\(303\) 60.7770 + 60.7770i 0.200584 + 0.200584i
\(304\) 0 0
\(305\) 199.535 + 490.251i 0.654214 + 1.60738i
\(306\) 0 0
\(307\) −184.175 + 184.175i −0.599920 + 0.599920i −0.940291 0.340371i \(-0.889447\pi\)
0.340371 + 0.940291i \(0.389447\pi\)
\(308\) 0 0
\(309\) 46.0333i 0.148975i
\(310\) 0 0
\(311\) 191.522 0.615826 0.307913 0.951415i \(-0.400369\pi\)
0.307913 + 0.951415i \(0.400369\pi\)
\(312\) 0 0
\(313\) −257.541 257.541i −0.822815 0.822815i 0.163696 0.986511i \(-0.447658\pi\)
−0.986511 + 0.163696i \(0.947658\pi\)
\(314\) 0 0
\(315\) −49.6261 + 117.749i −0.157543 + 0.373805i
\(316\) 0 0
\(317\) 162.518 162.518i 0.512674 0.512674i −0.402671 0.915345i \(-0.631918\pi\)
0.915345 + 0.402671i \(0.131918\pi\)
\(318\) 0 0
\(319\) 925.771i 2.90210i
\(320\) 0 0
\(321\) 169.016 0.526529
\(322\) 0 0
\(323\) −43.6054 43.6054i −0.135001 0.135001i
\(324\) 0 0
\(325\) −4.40440 0.0543296i −0.0135520 0.000167168i
\(326\) 0 0
\(327\) 159.220 159.220i 0.486911 0.486911i
\(328\) 0 0
\(329\) 161.485i 0.490837i
\(330\) 0 0
\(331\) 49.0405 0.148159 0.0740793 0.997252i \(-0.476398\pi\)
0.0740793 + 0.997252i \(0.476398\pi\)
\(332\) 0 0
\(333\) 63.8079 + 63.8079i 0.191615 + 0.191615i
\(334\) 0 0
\(335\) −305.337 128.686i −0.911453 0.384139i
\(336\) 0 0
\(337\) −17.6580 + 17.6580i −0.0523977 + 0.0523977i −0.732820 0.680422i \(-0.761796\pi\)
0.680422 + 0.732820i \(0.261796\pi\)
\(338\) 0 0
\(339\) 386.003i 1.13865i
\(340\) 0 0
\(341\) −904.595 −2.65277
\(342\) 0 0
\(343\) 153.199 + 153.199i 0.446646 + 0.446646i
\(344\) 0 0
\(345\) 21.0506 8.56771i 0.0610161 0.0248339i
\(346\) 0 0
\(347\) 296.136 296.136i 0.853417 0.853417i −0.137135 0.990552i \(-0.543789\pi\)
0.990552 + 0.137135i \(0.0437894\pi\)
\(348\) 0 0
\(349\) 217.733i 0.623877i −0.950102 0.311939i \(-0.899022\pi\)
0.950102 0.311939i \(-0.100978\pi\)
\(350\) 0 0
\(351\) 0.915507 0.00260828
\(352\) 0 0
\(353\) 70.0501 + 70.0501i 0.198442 + 0.198442i 0.799332 0.600890i \(-0.205187\pi\)
−0.600890 + 0.799332i \(0.705187\pi\)
\(354\) 0 0
\(355\) −107.242 263.490i −0.302090 0.742224i
\(356\) 0 0
\(357\) −158.973 + 158.973i −0.445301 + 0.445301i
\(358\) 0 0
\(359\) 265.093i 0.738422i −0.929346 0.369211i \(-0.879628\pi\)
0.929346 0.369211i \(-0.120372\pi\)
\(360\) 0 0
\(361\) 344.621 0.954628
\(362\) 0 0
\(363\) −205.917 205.917i −0.567263 0.567263i
\(364\) 0 0
\(365\) 144.807 343.586i 0.396732 0.941333i
\(366\) 0 0
\(367\) 473.377 473.377i 1.28986 1.28986i 0.354984 0.934872i \(-0.384486\pi\)
0.934872 0.354984i \(-0.115514\pi\)
\(368\) 0 0
\(369\) 156.424i 0.423914i
\(370\) 0 0
\(371\) 149.764 0.403675
\(372\) 0 0
\(373\) 201.623 + 201.623i 0.540544 + 0.540544i 0.923688 0.383144i \(-0.125159\pi\)
−0.383144 + 0.923688i \(0.625159\pi\)
\(374\) 0 0
\(375\) 79.1385 + 201.524i 0.211036 + 0.537398i
\(376\) 0 0
\(377\) −6.78299 + 6.78299i −0.0179920 + 0.0179920i
\(378\) 0 0
\(379\) 230.312i 0.607684i 0.952722 + 0.303842i \(0.0982695\pi\)
−0.952722 + 0.303842i \(0.901730\pi\)
\(380\) 0 0
\(381\) 260.301 0.683206
\(382\) 0 0
\(383\) −312.599 312.599i −0.816185 0.816185i 0.169368 0.985553i \(-0.445827\pi\)
−0.985553 + 0.169368i \(0.945827\pi\)
\(384\) 0 0
\(385\) 667.393 + 281.278i 1.73349 + 0.730592i
\(386\) 0 0
\(387\) 151.366 151.366i 0.391127 0.391127i
\(388\) 0 0
\(389\) 555.109i 1.42702i 0.700647 + 0.713508i \(0.252895\pi\)
−0.700647 + 0.713508i \(0.747105\pi\)
\(390\) 0 0
\(391\) 39.9876 0.102270
\(392\) 0 0
\(393\) 126.014 + 126.014i 0.320647 + 0.320647i
\(394\) 0 0
\(395\) 70.8188 28.8237i 0.179288 0.0729714i
\(396\) 0 0
\(397\) 221.888 221.888i 0.558911 0.558911i −0.370086 0.928997i \(-0.620672\pi\)
0.928997 + 0.370086i \(0.120672\pi\)
\(398\) 0 0
\(399\) 59.7140i 0.149659i
\(400\) 0 0
\(401\) −319.629 −0.797079 −0.398540 0.917151i \(-0.630483\pi\)
−0.398540 + 0.917151i \(0.630483\pi\)
\(402\) 0 0
\(403\) −6.62784 6.62784i −0.0164463 0.0164463i
\(404\) 0 0
\(405\) −16.9640 41.6800i −0.0418865 0.102914i
\(406\) 0 0
\(407\) 361.659 361.659i 0.888598 0.888598i
\(408\) 0 0
\(409\) 40.1118i 0.0980730i 0.998797 + 0.0490365i \(0.0156151\pi\)
−0.998797 + 0.0490365i \(0.984385\pi\)
\(410\) 0 0
\(411\) 207.491 0.504844
\(412\) 0 0
\(413\) −52.9720 52.9720i −0.128262 0.128262i
\(414\) 0 0
\(415\) −126.852 + 300.984i −0.305667 + 0.725262i
\(416\) 0 0
\(417\) −298.899 + 298.899i −0.716783 + 0.716783i
\(418\) 0 0
\(419\) 345.933i 0.825616i 0.910818 + 0.412808i \(0.135452\pi\)
−0.910818 + 0.412808i \(0.864548\pi\)
\(420\) 0 0
\(421\) −105.186 −0.249849 −0.124925 0.992166i \(-0.539869\pi\)
−0.124925 + 0.992166i \(0.539869\pi\)
\(422\) 0 0
\(423\) 40.2134 + 40.2134i 0.0950672 + 0.0950672i
\(424\) 0 0
\(425\) −4.69856 + 380.903i −0.0110554 + 0.896243i
\(426\) 0 0
\(427\) 637.657 637.657i 1.49334 1.49334i
\(428\) 0 0
\(429\) 5.18904i 0.0120957i
\(430\) 0 0
\(431\) 147.504 0.342236 0.171118 0.985251i \(-0.445262\pi\)
0.171118 + 0.985251i \(0.445262\pi\)
\(432\) 0 0
\(433\) 202.619 + 202.619i 0.467942 + 0.467942i 0.901247 0.433305i \(-0.142653\pi\)
−0.433305 + 0.901247i \(0.642653\pi\)
\(434\) 0 0
\(435\) 434.494 + 183.121i 0.998836 + 0.420967i
\(436\) 0 0
\(437\) 7.51017 7.51017i 0.0171857 0.0171857i
\(438\) 0 0
\(439\) 513.562i 1.16985i −0.811089 0.584923i \(-0.801125\pi\)
0.811089 0.584923i \(-0.198875\pi\)
\(440\) 0 0
\(441\) 70.7000 0.160317
\(442\) 0 0
\(443\) −200.016 200.016i −0.451503 0.451503i 0.444350 0.895853i \(-0.353435\pi\)
−0.895853 + 0.444350i \(0.853435\pi\)
\(444\) 0 0
\(445\) −4.39278 + 1.78789i −0.00987142 + 0.00401773i
\(446\) 0 0
\(447\) 270.374 270.374i 0.604863 0.604863i
\(448\) 0 0
\(449\) 387.201i 0.862363i −0.902265 0.431182i \(-0.858097\pi\)
0.902265 0.431182i \(-0.141903\pi\)
\(450\) 0 0
\(451\) −886.603 −1.96586
\(452\) 0 0
\(453\) −266.975 266.975i −0.589349 0.589349i
\(454\) 0 0
\(455\) 2.82901 + 6.95078i 0.00621761 + 0.0152764i
\(456\) 0 0
\(457\) −124.992 + 124.992i −0.273505 + 0.273505i −0.830509 0.557005i \(-0.811951\pi\)
0.557005 + 0.830509i \(0.311951\pi\)
\(458\) 0 0
\(459\) 79.1753i 0.172495i
\(460\) 0 0
\(461\) −420.024 −0.911114 −0.455557 0.890207i \(-0.650560\pi\)
−0.455557 + 0.890207i \(0.650560\pi\)
\(462\) 0 0
\(463\) 228.184 + 228.184i 0.492839 + 0.492839i 0.909200 0.416361i \(-0.136695\pi\)
−0.416361 + 0.909200i \(0.636695\pi\)
\(464\) 0 0
\(465\) −178.932 + 424.555i −0.384800 + 0.913022i
\(466\) 0 0
\(467\) 17.4129 17.4129i 0.0372867 0.0372867i −0.688218 0.725504i \(-0.741607\pi\)
0.725504 + 0.688218i \(0.241607\pi\)
\(468\) 0 0
\(469\) 564.522i 1.20367i
\(470\) 0 0
\(471\) 453.261 0.962338
\(472\) 0 0
\(473\) −857.935 857.935i −1.81382 1.81382i
\(474\) 0 0
\(475\) 70.6559 + 72.4208i 0.148749 + 0.152465i
\(476\) 0 0
\(477\) −37.2944 + 37.2944i −0.0781854 + 0.0781854i
\(478\) 0 0
\(479\) 319.260i 0.666514i −0.942836 0.333257i \(-0.891852\pi\)
0.942836 0.333257i \(-0.108148\pi\)
\(480\) 0 0
\(481\) 5.29966 0.0110180
\(482\) 0 0
\(483\) −27.3799 27.3799i −0.0566872 0.0566872i
\(484\) 0 0
\(485\) 506.094 + 213.297i 1.04349 + 0.439788i
\(486\) 0 0
\(487\) −276.414 + 276.414i −0.567586 + 0.567586i −0.931452 0.363865i \(-0.881457\pi\)
0.363865 + 0.931452i \(0.381457\pi\)
\(488\) 0 0
\(489\) 38.0315i 0.0777740i
\(490\) 0 0
\(491\) 42.5613 0.0866829 0.0433414 0.999060i \(-0.486200\pi\)
0.0433414 + 0.999060i \(0.486200\pi\)
\(492\) 0 0
\(493\) 586.610 + 586.610i 1.18988 + 1.18988i
\(494\) 0 0
\(495\) −236.240 + 96.1511i −0.477252 + 0.194245i
\(496\) 0 0
\(497\) −342.714 + 342.714i −0.689565 + 0.689565i
\(498\) 0 0
\(499\) 669.280i 1.34124i 0.741800 + 0.670621i \(0.233972\pi\)
−0.741800 + 0.670621i \(0.766028\pi\)
\(500\) 0 0
\(501\) 52.7739 0.105337
\(502\) 0 0
\(503\) −3.01493 3.01493i −0.00599389 0.00599389i 0.704103 0.710097i \(-0.251349\pi\)
−0.710097 + 0.704103i \(0.751349\pi\)
\(504\) 0 0
\(505\) −93.5363 229.815i −0.185220 0.455080i
\(506\) 0 0
\(507\) −206.944 + 206.944i −0.408173 + 0.408173i
\(508\) 0 0
\(509\) 506.628i 0.995339i −0.867367 0.497670i \(-0.834189\pi\)
0.867367 0.497670i \(-0.165811\pi\)
\(510\) 0 0
\(511\) −635.241 −1.24313
\(512\) 0 0
\(513\) −14.8701 14.8701i −0.0289865 0.0289865i
\(514\) 0 0
\(515\) −51.6098 + 122.455i −0.100213 + 0.237778i
\(516\) 0 0
\(517\) 227.927 227.927i 0.440865 0.440865i
\(518\) 0 0
\(519\) 212.079i 0.408630i
\(520\) 0 0
\(521\) 399.589 0.766966 0.383483 0.923548i \(-0.374725\pi\)
0.383483 + 0.923548i \(0.374725\pi\)
\(522\) 0 0
\(523\) −404.156 404.156i −0.772764 0.772764i 0.205824 0.978589i \(-0.434012\pi\)
−0.978589 + 0.205824i \(0.934012\pi\)
\(524\) 0 0
\(525\) 264.025 257.591i 0.502905 0.490650i
\(526\) 0 0
\(527\) −573.192 + 573.192i −1.08765 + 1.08765i
\(528\) 0 0
\(529\) 522.113i 0.986981i
\(530\) 0 0
\(531\) 26.3824 0.0496844
\(532\) 0 0
\(533\) −6.49602 6.49602i −0.0121877 0.0121877i
\(534\) 0 0
\(535\) −449.607 189.490i −0.840386 0.354187i
\(536\) 0 0
\(537\) −55.6826 + 55.6826i −0.103692 + 0.103692i
\(538\) 0 0
\(539\) 400.723i 0.743457i
\(540\) 0 0
\(541\) −766.639 −1.41708 −0.708538 0.705672i \(-0.750645\pi\)
−0.708538 + 0.705672i \(0.750645\pi\)
\(542\) 0 0
\(543\) −16.5330 16.5330i −0.0304474 0.0304474i
\(544\) 0 0
\(545\) −602.056 + 245.041i −1.10469 + 0.449616i
\(546\) 0 0
\(547\) −192.460 + 192.460i −0.351846 + 0.351846i −0.860796 0.508950i \(-0.830034\pi\)
0.508950 + 0.860796i \(0.330034\pi\)
\(548\) 0 0
\(549\) 317.581i 0.578472i
\(550\) 0 0
\(551\) 220.345 0.399901
\(552\) 0 0
\(553\) −92.1121 92.1121i −0.166568 0.166568i
\(554\) 0 0
\(555\) −98.2008 241.276i −0.176938 0.434731i
\(556\) 0 0
\(557\) −162.407 + 162.407i −0.291574 + 0.291574i −0.837702 0.546128i \(-0.816101\pi\)
0.546128 + 0.837702i \(0.316101\pi\)
\(558\) 0 0
\(559\) 12.5719i 0.0224901i
\(560\) 0 0
\(561\) −448.761 −0.799931
\(562\) 0 0
\(563\) 687.682 + 687.682i 1.22146 + 1.22146i 0.967113 + 0.254346i \(0.0818603\pi\)
0.254346 + 0.967113i \(0.418140\pi\)
\(564\) 0 0
\(565\) 432.763 1026.82i 0.765953 1.81739i
\(566\) 0 0
\(567\) −54.2121 + 54.2121i −0.0956121 + 0.0956121i
\(568\) 0 0
\(569\) 452.621i 0.795468i 0.917501 + 0.397734i \(0.130203\pi\)
−0.917501 + 0.397734i \(0.869797\pi\)
\(570\) 0 0
\(571\) 8.52498 0.0149299 0.00746496 0.999972i \(-0.497624\pi\)
0.00746496 + 0.999972i \(0.497624\pi\)
\(572\) 0 0
\(573\) −82.8772 82.8772i −0.144637 0.144637i
\(574\) 0 0
\(575\) −65.6032 0.809236i −0.114092 0.00140737i
\(576\) 0 0
\(577\) 271.812 271.812i 0.471078 0.471078i −0.431186 0.902263i \(-0.641905\pi\)
0.902263 + 0.431186i \(0.141905\pi\)
\(578\) 0 0
\(579\) 78.3755i 0.135364i
\(580\) 0 0
\(581\) 556.474 0.957787
\(582\) 0 0
\(583\) 211.383 + 211.383i 0.362577 + 0.362577i
\(584\) 0 0
\(585\) −2.43538 1.02641i −0.00416305 0.00175455i
\(586\) 0 0
\(587\) 160.042 160.042i 0.272644 0.272644i −0.557519 0.830164i \(-0.688247\pi\)
0.830164 + 0.557519i \(0.188247\pi\)
\(588\) 0 0
\(589\) 215.305i 0.365544i
\(590\) 0 0
\(591\) −298.975 −0.505881
\(592\) 0 0
\(593\) −25.3238 25.3238i −0.0427045 0.0427045i 0.685432 0.728137i \(-0.259613\pi\)
−0.728137 + 0.685432i \(0.759613\pi\)
\(594\) 0 0
\(595\) 601.121 244.660i 1.01029 0.411193i
\(596\) 0 0
\(597\) −5.34469 + 5.34469i −0.00895257 + 0.00895257i
\(598\) 0 0
\(599\) 1017.30i 1.69832i 0.528132 + 0.849162i \(0.322893\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(600\) 0 0
\(601\) −322.485 −0.536580 −0.268290 0.963338i \(-0.586459\pi\)
−0.268290 + 0.963338i \(0.586459\pi\)
\(602\) 0 0
\(603\) −140.579 140.579i −0.233132 0.233132i
\(604\) 0 0
\(605\) 316.907 + 778.629i 0.523813 + 1.28699i
\(606\) 0 0
\(607\) −151.189 + 151.189i −0.249076 + 0.249076i −0.820591 0.571515i \(-0.806356\pi\)
0.571515 + 0.820591i \(0.306356\pi\)
\(608\) 0 0
\(609\) 803.315i 1.31907i
\(610\) 0 0
\(611\) 3.33998 0.00546642
\(612\) 0 0
\(613\) 397.727 + 397.727i 0.648821 + 0.648821i 0.952708 0.303887i \(-0.0982847\pi\)
−0.303887 + 0.952708i \(0.598285\pi\)
\(614\) 0 0
\(615\) −175.373 + 416.111i −0.285160 + 0.676604i
\(616\) 0 0
\(617\) 657.460 657.460i 1.06557 1.06557i 0.0678812 0.997693i \(-0.478376\pi\)
0.997693 0.0678812i \(-0.0216239\pi\)
\(618\) 0 0
\(619\) 984.228i 1.59003i 0.606590 + 0.795015i \(0.292537\pi\)
−0.606590 + 0.795015i \(0.707463\pi\)
\(620\) 0 0
\(621\) 13.6364 0.0219588
\(622\) 0 0
\(623\) 5.71358 + 5.71358i 0.00917107 + 0.00917107i
\(624\) 0 0
\(625\) 15.4168 624.810i 0.0246669 0.999696i
\(626\) 0 0
\(627\) −84.2829 + 84.2829i −0.134422 + 0.134422i
\(628\) 0 0
\(629\) 458.328i 0.728661i
\(630\) 0 0
\(631\) −242.533 −0.384362 −0.192181 0.981359i \(-0.561556\pi\)
−0.192181 + 0.981359i \(0.561556\pi\)
\(632\) 0 0
\(633\) −224.246 224.246i −0.354260 0.354260i
\(634\) 0 0
\(635\) −692.440 291.834i −1.09046 0.459581i
\(636\) 0 0
\(637\) 2.93604 2.93604i 0.00460917 0.00460917i
\(638\) 0 0
\(639\) 170.687i 0.267115i
\(640\) 0 0
\(641\) 761.727 1.18834 0.594171 0.804339i \(-0.297480\pi\)
0.594171 + 0.804339i \(0.297480\pi\)
\(642\) 0 0
\(643\) 11.3113 + 11.3113i 0.0175914 + 0.0175914i 0.715848 0.698256i \(-0.246040\pi\)
−0.698256 + 0.715848i \(0.746040\pi\)
\(644\) 0 0
\(645\) −572.359 + 232.954i −0.887379 + 0.361169i
\(646\) 0 0
\(647\) −290.292 + 290.292i −0.448674 + 0.448674i −0.894914 0.446240i \(-0.852763\pi\)
0.446240 + 0.894914i \(0.352763\pi\)
\(648\) 0 0
\(649\) 149.534i 0.230407i
\(650\) 0 0
\(651\) 784.940 1.20575
\(652\) 0 0
\(653\) 791.306 + 791.306i 1.21180 + 1.21180i 0.970434 + 0.241368i \(0.0775961\pi\)
0.241368 + 0.970434i \(0.422404\pi\)
\(654\) 0 0
\(655\) −193.937 476.496i −0.296087 0.727474i
\(656\) 0 0
\(657\) 158.189 158.189i 0.240775 0.240775i
\(658\) 0 0
\(659\) 1153.66i 1.75062i −0.483559 0.875312i \(-0.660656\pi\)
0.483559 0.875312i \(-0.339344\pi\)
\(660\) 0 0
\(661\) 1250.76 1.89222 0.946111 0.323842i \(-0.104975\pi\)
0.946111 + 0.323842i \(0.104975\pi\)
\(662\) 0 0
\(663\) −3.28801 3.28801i −0.00495929 0.00495929i
\(664\) 0 0
\(665\) 66.9477 158.848i 0.100673 0.238869i
\(666\) 0 0
\(667\) −101.032 + 101.032i −0.151472 + 0.151472i
\(668\) 0 0
\(669\) 12.3445i 0.0184522i
\(670\) 0 0
\(671\) 1800.03 2.68261
\(672\) 0 0
\(673\) −320.198 320.198i −0.475778 0.475778i 0.428001 0.903778i \(-0.359218\pi\)
−0.903778 + 0.428001i \(0.859218\pi\)
\(674\) 0 0
\(675\) −1.60228 + 129.894i −0.00237375 + 0.192435i
\(676\) 0 0
\(677\) 105.922 105.922i 0.156457 0.156457i −0.624538 0.780995i \(-0.714713\pi\)
0.780995 + 0.624538i \(0.214713\pi\)
\(678\) 0 0
\(679\) 935.692i 1.37804i
\(680\) 0 0
\(681\) 554.749 0.814610
\(682\) 0 0
\(683\) 467.606 + 467.606i 0.684636 + 0.684636i 0.961041 0.276405i \(-0.0891432\pi\)
−0.276405 + 0.961041i \(0.589143\pi\)
\(684\) 0 0
\(685\) −551.957 232.626i −0.805776 0.339601i
\(686\) 0 0
\(687\) −339.152 + 339.152i −0.493671 + 0.493671i
\(688\) 0 0
\(689\) 3.09754i 0.00449571i
\(690\) 0 0
\(691\) 47.2980 0.0684487 0.0342243 0.999414i \(-0.489104\pi\)
0.0342243 + 0.999414i \(0.489104\pi\)
\(692\) 0 0
\(693\) 307.271 + 307.271i 0.443392 + 0.443392i
\(694\) 0 0
\(695\) 1130.22 460.007i 1.62622 0.661881i
\(696\) 0 0
\(697\) −561.792 + 561.792i −0.806014 + 0.806014i
\(698\) 0 0
\(699\) 485.260i 0.694220i
\(700\) 0 0
\(701\) 444.721 0.634409 0.317204 0.948357i \(-0.397256\pi\)
0.317204 + 0.948357i \(0.397256\pi\)
\(702\) 0 0
\(703\) −86.0796 86.0796i −0.122446 0.122446i
\(704\) 0 0
\(705\) −61.8887 152.058i −0.0877854 0.215686i
\(706\) 0 0
\(707\) −298.915 + 298.915i −0.422793 + 0.422793i
\(708\) 0 0
\(709\) 996.549i 1.40557i 0.711403 + 0.702785i \(0.248060\pi\)
−0.711403 + 0.702785i \(0.751940\pi\)
\(710\) 0 0
\(711\) 45.8759 0.0645231
\(712\) 0 0
\(713\) −98.7212 98.7212i −0.138459 0.138459i
\(714\) 0 0
\(715\) −5.81764 + 13.8036i −0.00813655 + 0.0193057i
\(716\) 0 0
\(717\) 281.916 281.916i 0.393188 0.393188i
\(718\) 0 0
\(719\) 319.778i 0.444753i 0.974961 + 0.222377i \(0.0713814\pi\)
−0.974961 + 0.222377i \(0.928619\pi\)
\(720\) 0 0
\(721\) 226.402 0.314011
\(722\) 0 0
\(723\) −347.266 347.266i −0.480313 0.480313i
\(724\) 0 0
\(725\) −950.513 974.256i −1.31105 1.34380i
\(726\) 0 0
\(727\) −116.716 + 116.716i −0.160545 + 0.160545i −0.782808 0.622263i \(-0.786213\pi\)
0.622263 + 0.782808i \(0.286213\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −1087.25 −1.48735
\(732\) 0 0
\(733\) −121.699 121.699i −0.166028 0.166028i 0.619203 0.785231i \(-0.287456\pi\)
−0.785231 + 0.619203i \(0.787456\pi\)
\(734\) 0 0
\(735\) −188.072 79.2645i −0.255881 0.107843i
\(736\) 0 0
\(737\) −796.791 + 796.791i −1.08113 + 1.08113i
\(738\) 0 0
\(739\) 498.476i 0.674528i −0.941410 0.337264i \(-0.890499\pi\)
0.941410 0.337264i \(-0.109501\pi\)
\(740\) 0 0
\(741\) −1.23506 −0.00166674
\(742\) 0 0
\(743\) 13.9317 + 13.9317i 0.0187507 + 0.0187507i 0.716420 0.697669i \(-0.245779\pi\)
−0.697669 + 0.716420i \(0.745779\pi\)
\(744\) 0 0
\(745\) −1022.36 + 416.108i −1.37230 + 0.558534i
\(746\) 0 0
\(747\) −138.574 + 138.574i −0.185508 + 0.185508i
\(748\) 0 0
\(749\) 831.257i 1.10982i
\(750\) 0 0
\(751\) −148.692 −0.197992 −0.0989962 0.995088i \(-0.531563\pi\)
−0.0989962 + 0.995088i \(0.531563\pi\)
\(752\) 0 0
\(753\) −248.294 248.294i −0.329740 0.329740i
\(754\) 0 0
\(755\) 410.877 + 1009.51i 0.544208 + 1.33710i
\(756\) 0 0
\(757\) 243.978 243.978i 0.322296 0.322296i −0.527352 0.849647i \(-0.676815\pi\)
0.849647 + 0.527352i \(0.176815\pi\)
\(758\) 0 0
\(759\) 77.2903i 0.101832i
\(760\) 0 0
\(761\) 838.059 1.10126 0.550630 0.834749i \(-0.314387\pi\)
0.550630 + 0.834749i \(0.314387\pi\)
\(762\) 0 0
\(763\) 783.079 + 783.079i 1.02632 + 1.02632i
\(764\) 0 0
\(765\) −88.7665 + 210.618i −0.116035 + 0.275318i
\(766\) 0 0
\(767\) 1.09561 1.09561i 0.00142844 0.00142844i
\(768\) 0 0
\(769\) 48.7943i 0.0634516i −0.999497 0.0317258i \(-0.989900\pi\)
0.999497 0.0317258i \(-0.0101003\pi\)
\(770\) 0 0
\(771\) −495.167 −0.642240
\(772\) 0 0
\(773\) 349.857 + 349.857i 0.452596 + 0.452596i 0.896215 0.443619i \(-0.146306\pi\)
−0.443619 + 0.896215i \(0.646306\pi\)
\(774\) 0 0
\(775\) 951.971 928.772i 1.22835 1.19842i
\(776\) 0 0
\(777\) −313.821 + 313.821i −0.403888 + 0.403888i
\(778\) 0 0
\(779\) 211.023i 0.270889i
\(780\) 0 0
\(781\) −967.442 −1.23872
\(782\) 0 0
\(783\) 200.043 + 200.043i 0.255483 + 0.255483i
\(784\) 0 0
\(785\) −1205.74 508.169i −1.53598 0.647349i
\(786\) 0 0
\(787\) −504.294 + 504.294i −0.640780 + 0.640780i −0.950747 0.309967i \(-0.899682\pi\)
0.309967 + 0.950747i \(0.399682\pi\)
\(788\) 0 0
\(789\) 84.2367i 0.106764i
\(790\) 0 0
\(791\) −1898.45 −2.40006
\(792\) 0 0
\(793\) 13.1886 + 13.1886i 0.0166313 + 0.0166313i
\(794\) 0 0
\(795\) 141.021 57.3964i 0.177385 0.0721967i
\(796\) 0 0
\(797\) −275.451 + 275.451i −0.345610 + 0.345610i −0.858471 0.512862i \(-0.828585\pi\)
0.512862 + 0.858471i \(0.328585\pi\)
\(798\) 0 0
\(799\) 288.850i 0.361514i
\(800\) 0 0
\(801\) −2.84561 −0.00355258
\(802\) 0 0
\(803\) −896.606 896.606i −1.11657 1.11657i
\(804\) 0 0
\(805\) 42.1379 + 103.531i 0.0523452 + 0.128610i
\(806\) 0 0
\(807\) −39.8619 + 39.8619i −0.0493951 + 0.0493951i
\(808\) 0 0
\(809\) 472.171i 0.583648i −0.956472 0.291824i \(-0.905738\pi\)
0.956472 0.291824i \(-0.0942621\pi\)
\(810\) 0 0
\(811\) 1383.85 1.70636 0.853178 0.521620i \(-0.174672\pi\)
0.853178 + 0.521620i \(0.174672\pi\)
\(812\) 0 0
\(813\) 112.614 + 112.614i 0.138517 + 0.138517i
\(814\) 0 0
\(815\) 42.6386 101.169i 0.0523173 0.124134i
\(816\) 0 0
\(817\) −204.200 + 204.200i −0.249938 + 0.249938i
\(818\) 0 0
\(819\) 4.50266i 0.00549776i
\(820\) 0 0
\(821\) −280.480 −0.341632 −0.170816 0.985303i \(-0.554640\pi\)
−0.170816 + 0.985303i \(0.554640\pi\)
\(822\) 0 0
\(823\) 256.396 + 256.396i 0.311539 + 0.311539i 0.845505 0.533967i \(-0.179299\pi\)
−0.533967 + 0.845505i \(0.679299\pi\)
\(824\) 0 0
\(825\) 736.231 + 9.08164i 0.892402 + 0.0110081i
\(826\) 0 0
\(827\) 325.679 325.679i 0.393808 0.393808i −0.482234 0.876042i \(-0.660175\pi\)
0.876042 + 0.482234i \(0.160175\pi\)
\(828\) 0 0
\(829\) 5.87954i 0.00709232i 0.999994 + 0.00354616i \(0.00112878\pi\)
−0.999994 + 0.00354616i \(0.998871\pi\)
\(830\) 0 0
\(831\) −67.7803 −0.0815647
\(832\) 0 0
\(833\) −253.916 253.916i −0.304822 0.304822i
\(834\) 0 0
\(835\) −140.386 59.1669i −0.168127 0.0708585i
\(836\) 0 0
\(837\) −195.467 + 195.467i −0.233533 + 0.233533i
\(838\) 0 0
\(839\) 141.023i 0.168085i −0.996462 0.0840424i \(-0.973217\pi\)
0.996462 0.0840424i \(-0.0267831\pi\)
\(840\) 0 0
\(841\) −2123.24 −2.52466
\(842\) 0 0
\(843\) −224.628 224.628i −0.266462 0.266462i
\(844\) 0 0
\(845\) 782.514 318.488i 0.926052 0.376909i
\(846\) 0 0
\(847\) 1012.74 1012.74i 1.19568 1.19568i
\(848\) 0 0
\(849\) 816.068i 0.961211i
\(850\) 0 0
\(851\) 78.9380 0.0927591
\(852\) 0 0
\(853\) −322.940 322.940i −0.378593 0.378593i 0.492002 0.870594i \(-0.336265\pi\)
−0.870594 + 0.492002i \(0.836265\pi\)
\(854\) 0 0
\(855\) 22.8852 + 56.2281i 0.0267663 + 0.0657639i
\(856\) 0 0
\(857\) 277.382 277.382i 0.323667 0.323667i −0.526505 0.850172i \(-0.676498\pi\)
0.850172 + 0.526505i \(0.176498\pi\)
\(858\) 0 0
\(859\) 530.257i 0.617295i −0.951176 0.308648i \(-0.900124\pi\)
0.951176 0.308648i \(-0.0998764\pi\)
\(860\) 0 0
\(861\) 769.328 0.893529
\(862\) 0 0
\(863\) −725.484 725.484i −0.840653 0.840653i 0.148291 0.988944i \(-0.452623\pi\)
−0.988944 + 0.148291i \(0.952623\pi\)
\(864\) 0 0
\(865\) −237.770 + 564.161i −0.274878 + 0.652209i
\(866\) 0 0
\(867\) 69.5959 69.5959i 0.0802721 0.0802721i
\(868\) 0 0
\(869\) 260.022i 0.299220i
\(870\) 0 0
\(871\) −11.6760 −0.0134052
\(872\) 0 0
\(873\) 233.008 + 233.008i 0.266905 + 0.266905i
\(874\) 0 0
\(875\) −991.141 + 389.221i −1.13273 + 0.444824i
\(876\) 0 0
\(877\) 114.761 114.761i 0.130856 0.130856i −0.638645 0.769501i \(-0.720505\pi\)
0.769501 + 0.638645i \(0.220505\pi\)
\(878\) 0 0
\(879\) 455.321i 0.517999i
\(880\) 0 0
\(881\) −582.431 −0.661102 −0.330551 0.943788i \(-0.607235\pi\)
−0.330551 + 0.943788i \(0.607235\pi\)
\(882\) 0 0
\(883\) 1140.67 + 1140.67i 1.29182 + 1.29182i 0.933663 + 0.358153i \(0.116594\pi\)
0.358153 + 0.933663i \(0.383406\pi\)
\(884\) 0 0
\(885\) −70.1810 29.5783i −0.0793006 0.0334218i
\(886\) 0 0
\(887\) −910.472 + 910.472i −1.02646 + 1.02646i −0.0268221 + 0.999640i \(0.508539\pi\)
−0.999640 + 0.0268221i \(0.991461\pi\)
\(888\) 0 0
\(889\) 1280.22i 1.44007i
\(890\) 0 0
\(891\) −153.034 −0.171756
\(892\) 0 0
\(893\) −54.2496 54.2496i −0.0607498 0.0607498i
\(894\) 0 0
\(895\) 210.552 85.6960i 0.235253 0.0957497i
\(896\) 0 0
\(897\) 0.566296 0.566296i 0.000631322 0.000631322i
\(898\) 0 0
\(899\) 2896.44i 3.22184i
\(900\) 0 0
\(901\) 267.883 0.297318
\(902\) 0 0
\(903\) 744.453 + 744.453i 0.824421 + 0.824421i
\(904\) 0 0
\(905\) 25.4443 + 62.5158i 0.0281153 + 0.0690783i
\(906\) 0 0
\(907\) −928.527 + 928.527i −1.02373 + 1.02373i −0.0240232 + 0.999711i \(0.507648\pi\)
−0.999711 + 0.0240232i \(0.992352\pi\)
\(908\) 0 0
\(909\) 148.873i 0.163776i
\(910\) 0 0
\(911\) 751.939 0.825400 0.412700 0.910867i \(-0.364586\pi\)
0.412700 + 0.910867i \(0.364586\pi\)
\(912\) 0 0
\(913\) 785.431 + 785.431i 0.860275 + 0.860275i
\(914\) 0 0
\(915\) 356.053 844.813i 0.389129 0.923292i
\(916\) 0 0
\(917\) −619.766 + 619.766i −0.675862 + 0.675862i
\(918\) 0 0
\(919\) 612.491i 0.666476i −0.942843 0.333238i \(-0.891859\pi\)
0.942843 0.333238i \(-0.108141\pi\)
\(920\) 0 0
\(921\) 451.136 0.489833
\(922\) 0 0
\(923\) −7.08831 7.08831i −0.00767965 0.00767965i
\(924\) 0 0
\(925\) −9.27524 + 751.926i −0.0100273 + 0.812893i
\(926\) 0 0
\(927\) −56.3791 + 56.3791i −0.0608189 + 0.0608189i
\(928\) 0 0
\(929\) 487.299i 0.524541i 0.964994 + 0.262271i \(0.0844713\pi\)
−0.964994 + 0.262271i \(0.915529\pi\)
\(930\) 0 0
\(931\) −95.3773 −0.102446
\(932\) 0 0
\(933\) −234.565 234.565i −0.251410 0.251410i
\(934\) 0 0
\(935\) 1193.77 + 503.124i 1.27676 + 0.538100i
\(936\) 0 0
\(937\) 943.521 943.521i 1.00696 1.00696i 0.00698356 0.999976i \(-0.497777\pi\)
0.999976 0.00698356i \(-0.00222296\pi\)
\(938\) 0 0
\(939\) 630.844i 0.671826i
\(940\) 0 0
\(941\) 243.515 0.258784 0.129392 0.991594i \(-0.458698\pi\)
0.129392 + 0.991594i \(0.458698\pi\)
\(942\) 0 0
\(943\) −96.7577 96.7577i −0.102606 0.102606i
\(944\) 0 0
\(945\) 204.991 83.4328i 0.216922 0.0882887i
\(946\) 0 0
\(947\) 792.978 792.978i 0.837358 0.837358i −0.151153 0.988510i \(-0.548299\pi\)
0.988510 + 0.151153i \(0.0482985\pi\)
\(948\) 0 0
\(949\) 13.1386i 0.0138447i
\(950\) 0 0
\(951\) −398.085 −0.418596
\(952\) 0 0
\(953\) −77.6634 77.6634i −0.0814936 0.0814936i 0.665185 0.746679i \(-0.268353\pi\)
−0.746679 + 0.665185i \(0.768353\pi\)
\(954\) 0 0
\(955\) 127.549 + 313.383i 0.133559 + 0.328149i
\(956\) 0 0
\(957\) 1133.83 1133.83i 1.18478 1.18478i
\(958\) 0 0
\(959\) 1020.49i 1.06412i
\(960\) 0 0
\(961\) 1869.19 1.94504
\(962\) 0 0
\(963\) −207.001 207.001i −0.214954 0.214954i
\(964\) 0 0
\(965\) −87.8699 + 208.490i −0.0910569 + 0.216052i
\(966\) 0 0
\(967\) 294.078 294.078i 0.304113 0.304113i −0.538507 0.842621i \(-0.681012\pi\)
0.842621 + 0.538507i \(0.181012\pi\)
\(968\) 0 0
\(969\) 106.811i 0.110228i
\(970\) 0 0
\(971\) −322.263 −0.331888 −0.165944 0.986135i \(-0.553067\pi\)
−0.165944 + 0.986135i \(0.553067\pi\)
\(972\) 0 0
\(973\) −1470.05 1470.05i −1.51084 1.51084i
\(974\) 0 0
\(975\) 5.32773 + 5.46081i 0.00546433 + 0.00560083i
\(976\) 0 0
\(977\) 739.522 739.522i 0.756932 0.756932i −0.218831 0.975763i \(-0.570224\pi\)
0.975763 + 0.218831i \(0.0702243\pi\)
\(978\) 0 0
\(979\) 16.1288i 0.0164747i
\(980\) 0 0
\(981\) −390.008 −0.397561
\(982\) 0 0
\(983\) −767.218 767.218i −0.780486 0.780486i 0.199427 0.979913i \(-0.436092\pi\)
−0.979913 + 0.199427i \(0.936092\pi\)
\(984\) 0 0
\(985\) 795.319 + 335.193i 0.807430 + 0.340298i
\(986\) 0 0
\(987\) −197.778 + 197.778i −0.200383 + 0.200383i
\(988\) 0 0
\(989\) 187.258i 0.189341i
\(990\) 0 0
\(991\) 908.418 0.916668 0.458334 0.888780i \(-0.348446\pi\)
0.458334 + 0.888780i \(0.348446\pi\)
\(992\) 0 0
\(993\) −60.0621 60.0621i −0.0604855 0.0604855i
\(994\) 0 0
\(995\) 20.2098 8.22551i 0.0203113 0.00826685i
\(996\) 0 0
\(997\) −397.062 + 397.062i −0.398257 + 0.398257i −0.877618 0.479361i \(-0.840868\pi\)
0.479361 + 0.877618i \(0.340868\pi\)
\(998\) 0 0
\(999\) 156.297i 0.156453i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.3.u.b.73.2 8
3.2 odd 2 360.3.v.f.73.1 8
4.3 odd 2 240.3.bg.e.193.4 8
5.2 odd 4 inner 120.3.u.b.97.2 yes 8
5.3 odd 4 600.3.u.h.457.3 8
5.4 even 2 600.3.u.h.193.3 8
8.3 odd 2 960.3.bg.k.193.1 8
8.5 even 2 960.3.bg.l.193.3 8
12.11 even 2 720.3.bh.o.433.1 8
15.2 even 4 360.3.v.f.217.1 8
15.8 even 4 1800.3.v.t.1657.2 8
15.14 odd 2 1800.3.v.t.793.2 8
20.3 even 4 1200.3.bg.q.1057.2 8
20.7 even 4 240.3.bg.e.97.4 8
20.19 odd 2 1200.3.bg.q.193.2 8
40.27 even 4 960.3.bg.k.577.1 8
40.37 odd 4 960.3.bg.l.577.3 8
60.47 odd 4 720.3.bh.o.577.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.u.b.73.2 8 1.1 even 1 trivial
120.3.u.b.97.2 yes 8 5.2 odd 4 inner
240.3.bg.e.97.4 8 20.7 even 4
240.3.bg.e.193.4 8 4.3 odd 2
360.3.v.f.73.1 8 3.2 odd 2
360.3.v.f.217.1 8 15.2 even 4
600.3.u.h.193.3 8 5.4 even 2
600.3.u.h.457.3 8 5.3 odd 4
720.3.bh.o.433.1 8 12.11 even 2
720.3.bh.o.577.1 8 60.47 odd 4
960.3.bg.k.193.1 8 8.3 odd 2
960.3.bg.k.577.1 8 40.27 even 4
960.3.bg.l.193.3 8 8.5 even 2
960.3.bg.l.577.3 8 40.37 odd 4
1200.3.bg.q.193.2 8 20.19 odd 2
1200.3.bg.q.1057.2 8 20.3 even 4
1800.3.v.t.793.2 8 15.14 odd 2
1800.3.v.t.1657.2 8 15.8 even 4