Properties

Label 1800.3.v.t.1657.2
Level $1800$
Weight $3$
Character 1800.1657
Analytic conductor $49.046$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,3,Mod(793,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.793");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0464475849\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} + 269x^{4} - 1116x^{3} + 2312x^{2} + 680x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1657.2
Root \(-2.88489 - 2.88489i\) of defining polynomial
Character \(\chi\) \(=\) 1800.1657
Dual form 1800.3.v.t.793.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.02356 - 6.02356i) q^{7} +O(q^{10})\) \(q+(-6.02356 - 6.02356i) q^{7} -17.0038 q^{11} +(-0.124585 + 0.124585i) q^{13} +(10.7744 + 10.7744i) q^{17} +4.04713i q^{19} +(1.85568 - 1.85568i) q^{23} +54.4448i q^{29} -53.1995 q^{31} +(-21.2693 - 21.2693i) q^{37} +52.1414 q^{41} +(50.4554 - 50.4554i) q^{43} +(13.4045 + 13.4045i) q^{47} +23.5667i q^{49} +(12.4315 - 12.4315i) q^{53} -8.79413i q^{59} +105.860 q^{61} +(46.8595 + 46.8595i) q^{67} +56.8955 q^{71} +(52.7296 - 52.7296i) q^{73} +(102.424 + 102.424i) q^{77} +15.2920i q^{79} +(46.1914 - 46.1914i) q^{83} +0.948538i q^{89} +1.50089 q^{91} +(-77.6693 - 77.6693i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{7} - 32 q^{11} + 4 q^{13} + 52 q^{17} - 40 q^{23} + 96 q^{31} + 60 q^{37} + 152 q^{41} + 88 q^{43} - 16 q^{47} + 108 q^{53} + 264 q^{61} + 216 q^{67} + 240 q^{71} + 208 q^{73} + 168 q^{77} + 336 q^{83} + 592 q^{91} + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −6.02356 6.02356i −0.860509 0.860509i 0.130888 0.991397i \(-0.458217\pi\)
−0.991397 + 0.130888i \(0.958217\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −17.0038 −1.54580 −0.772901 0.634526i \(-0.781195\pi\)
−0.772901 + 0.634526i \(0.781195\pi\)
\(12\) 0 0
\(13\) −0.124585 + 0.124585i −0.00958344 + 0.00958344i −0.711882 0.702299i \(-0.752157\pi\)
0.702299 + 0.711882i \(0.252157\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 10.7744 + 10.7744i 0.633788 + 0.633788i 0.949016 0.315228i \(-0.102081\pi\)
−0.315228 + 0.949016i \(0.602081\pi\)
\(18\) 0 0
\(19\) 4.04713i 0.213007i 0.994312 + 0.106503i \(0.0339655\pi\)
−0.994312 + 0.106503i \(0.966035\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.85568 1.85568i 0.0806817 0.0806817i −0.665614 0.746296i \(-0.731830\pi\)
0.746296 + 0.665614i \(0.231830\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 54.4448i 1.87741i 0.344724 + 0.938704i \(0.387972\pi\)
−0.344724 + 0.938704i \(0.612028\pi\)
\(30\) 0 0
\(31\) −53.1995 −1.71611 −0.858056 0.513556i \(-0.828328\pi\)
−0.858056 + 0.513556i \(0.828328\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −21.2693 21.2693i −0.574846 0.574846i 0.358633 0.933479i \(-0.383243\pi\)
−0.933479 + 0.358633i \(0.883243\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 52.1414 1.27174 0.635871 0.771796i \(-0.280641\pi\)
0.635871 + 0.771796i \(0.280641\pi\)
\(42\) 0 0
\(43\) 50.4554 50.4554i 1.17338 1.17338i 0.191984 0.981398i \(-0.438508\pi\)
0.981398 0.191984i \(-0.0614921\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.4045 + 13.4045i 0.285201 + 0.285201i 0.835179 0.549978i \(-0.185364\pi\)
−0.549978 + 0.835179i \(0.685364\pi\)
\(48\) 0 0
\(49\) 23.5667i 0.480952i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.4315 12.4315i 0.234556 0.234556i −0.580035 0.814591i \(-0.696961\pi\)
0.814591 + 0.580035i \(0.196961\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.79413i 0.149053i −0.997219 0.0745265i \(-0.976255\pi\)
0.997219 0.0745265i \(-0.0237445\pi\)
\(60\) 0 0
\(61\) 105.860 1.73542 0.867708 0.497074i \(-0.165592\pi\)
0.867708 + 0.497074i \(0.165592\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 46.8595 + 46.8595i 0.699396 + 0.699396i 0.964280 0.264885i \(-0.0853338\pi\)
−0.264885 + 0.964280i \(0.585334\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 56.8955 0.801346 0.400673 0.916221i \(-0.368776\pi\)
0.400673 + 0.916221i \(0.368776\pi\)
\(72\) 0 0
\(73\) 52.7296 52.7296i 0.722324 0.722324i −0.246754 0.969078i \(-0.579364\pi\)
0.969078 + 0.246754i \(0.0793640\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 102.424 + 102.424i 1.33018 + 1.33018i
\(78\) 0 0
\(79\) 15.2920i 0.193569i 0.995305 + 0.0967846i \(0.0308558\pi\)
−0.995305 + 0.0967846i \(0.969144\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 46.1914 46.1914i 0.556523 0.556523i −0.371792 0.928316i \(-0.621257\pi\)
0.928316 + 0.371792i \(0.121257\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.948538i 0.0106577i 0.999986 + 0.00532886i \(0.00169624\pi\)
−0.999986 + 0.00532886i \(0.998304\pi\)
\(90\) 0 0
\(91\) 1.50089 0.0164933
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −77.6693 77.6693i −0.800715 0.800715i 0.182492 0.983207i \(-0.441583\pi\)
−0.983207 + 0.182492i \(0.941583\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 49.6243 0.491329 0.245665 0.969355i \(-0.420994\pi\)
0.245665 + 0.969355i \(0.420994\pi\)
\(102\) 0 0
\(103\) −18.7930 + 18.7930i −0.182457 + 0.182457i −0.792425 0.609969i \(-0.791182\pi\)
0.609969 + 0.792425i \(0.291182\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −69.0004 69.0004i −0.644863 0.644863i 0.306884 0.951747i \(-0.400714\pi\)
−0.951747 + 0.306884i \(0.900714\pi\)
\(108\) 0 0
\(109\) 130.003i 1.19268i −0.802730 0.596342i \(-0.796620\pi\)
0.802730 0.596342i \(-0.203380\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −157.585 + 157.585i −1.39456 + 1.39456i −0.579799 + 0.814760i \(0.696869\pi\)
−0.814760 + 0.579799i \(0.803131\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 129.801i 1.09076i
\(120\) 0 0
\(121\) 168.130 1.38951
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 106.268 + 106.268i 0.836753 + 0.836753i 0.988430 0.151677i \(-0.0484674\pi\)
−0.151677 + 0.988430i \(0.548467\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 102.890 0.785421 0.392711 0.919662i \(-0.371537\pi\)
0.392711 + 0.919662i \(0.371537\pi\)
\(132\) 0 0
\(133\) 24.3781 24.3781i 0.183294 0.183294i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −84.7079 84.7079i −0.618306 0.618306i 0.326791 0.945097i \(-0.394033\pi\)
−0.945097 + 0.326791i \(0.894033\pi\)
\(138\) 0 0
\(139\) 244.050i 1.75575i 0.478887 + 0.877877i \(0.341040\pi\)
−0.478887 + 0.877877i \(0.658960\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.11842 2.11842i 0.0148141 0.0148141i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 220.759i 1.48161i 0.671722 + 0.740803i \(0.265555\pi\)
−0.671722 + 0.740803i \(0.734445\pi\)
\(150\) 0 0
\(151\) 217.984 1.44360 0.721802 0.692099i \(-0.243314\pi\)
0.721802 + 0.692099i \(0.243314\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 185.043 + 185.043i 1.17862 + 1.17862i 0.980096 + 0.198522i \(0.0636141\pi\)
0.198522 + 0.980096i \(0.436386\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −22.3556 −0.138855
\(162\) 0 0
\(163\) 15.5263 15.5263i 0.0952533 0.0952533i −0.657874 0.753128i \(-0.728544\pi\)
0.753128 + 0.657874i \(0.228544\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.5448 21.5448i −0.129011 0.129011i 0.639653 0.768664i \(-0.279078\pi\)
−0.768664 + 0.639653i \(0.779078\pi\)
\(168\) 0 0
\(169\) 168.969i 0.999816i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 86.5808 86.5808i 0.500467 0.500467i −0.411116 0.911583i \(-0.634861\pi\)
0.911583 + 0.411116i \(0.134861\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 45.4647i 0.253993i −0.991903 0.126996i \(-0.959466\pi\)
0.991903 0.126996i \(-0.0405336\pi\)
\(180\) 0 0
\(181\) 13.4991 0.0745807 0.0372903 0.999304i \(-0.488127\pi\)
0.0372903 + 0.999304i \(0.488127\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −183.206 183.206i −0.979711 0.979711i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −67.6690 −0.354288 −0.177144 0.984185i \(-0.556686\pi\)
−0.177144 + 0.984185i \(0.556686\pi\)
\(192\) 0 0
\(193\) −31.9967 + 31.9967i −0.165786 + 0.165786i −0.785124 0.619338i \(-0.787401\pi\)
0.619338 + 0.785124i \(0.287401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 122.056 + 122.056i 0.619575 + 0.619575i 0.945422 0.325848i \(-0.105650\pi\)
−0.325848 + 0.945422i \(0.605650\pi\)
\(198\) 0 0
\(199\) 4.36392i 0.0219292i 0.999940 + 0.0109646i \(0.00349022\pi\)
−0.999940 + 0.0109646i \(0.996510\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 327.952 327.952i 1.61553 1.61553i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 68.8167i 0.329266i
\(210\) 0 0
\(211\) 183.096 0.867756 0.433878 0.900972i \(-0.357145\pi\)
0.433878 + 0.900972i \(0.357145\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 320.451 + 320.451i 1.47673 + 1.47673i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.68465 −0.0121477
\(222\) 0 0
\(223\) 5.03964 5.03964i 0.0225993 0.0225993i −0.695717 0.718316i \(-0.744913\pi\)
0.718316 + 0.695717i \(0.244913\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −226.475 226.475i −0.997689 0.997689i 0.00230792 0.999997i \(-0.499265\pi\)
−0.999997 + 0.00230792i \(0.999265\pi\)
\(228\) 0 0
\(229\) 276.917i 1.20924i 0.796513 + 0.604621i \(0.206676\pi\)
−0.796513 + 0.604621i \(0.793324\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 198.106 198.106i 0.850242 0.850242i −0.139921 0.990163i \(-0.544685\pi\)
0.990163 + 0.139921i \(0.0446847\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 230.183i 0.963111i 0.876416 + 0.481555i \(0.159928\pi\)
−0.876416 + 0.481555i \(0.840072\pi\)
\(240\) 0 0
\(241\) 283.542 1.17652 0.588261 0.808671i \(-0.299813\pi\)
0.588261 + 0.808671i \(0.299813\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.504210 0.504210i −0.00204134 0.00204134i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −202.731 −0.807694 −0.403847 0.914826i \(-0.632327\pi\)
−0.403847 + 0.914826i \(0.632327\pi\)
\(252\) 0 0
\(253\) −31.5536 + 31.5536i −0.124718 + 0.124718i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 202.151 + 202.151i 0.786580 + 0.786580i 0.980932 0.194352i \(-0.0622604\pi\)
−0.194352 + 0.980932i \(0.562260\pi\)
\(258\) 0 0
\(259\) 256.234i 0.989320i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −34.3895 + 34.3895i −0.130759 + 0.130759i −0.769457 0.638699i \(-0.779473\pi\)
0.638699 + 0.769457i \(0.279473\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 32.5471i 0.120993i −0.998168 0.0604964i \(-0.980732\pi\)
0.998168 0.0604964i \(-0.0192684\pi\)
\(270\) 0 0
\(271\) −91.9490 −0.339295 −0.169648 0.985505i \(-0.554263\pi\)
−0.169648 + 0.985505i \(0.554263\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −27.6712 27.6712i −0.0998959 0.0998959i 0.655393 0.755288i \(-0.272503\pi\)
−0.755288 + 0.655393i \(0.772503\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −183.408 −0.652697 −0.326348 0.945250i \(-0.605818\pi\)
−0.326348 + 0.945250i \(0.605818\pi\)
\(282\) 0 0
\(283\) 333.158 333.158i 1.17724 1.17724i 0.196793 0.980445i \(-0.436947\pi\)
0.980445 0.196793i \(-0.0630527\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −314.077 314.077i −1.09434 1.09434i
\(288\) 0 0
\(289\) 56.8248i 0.196626i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −185.884 + 185.884i −0.634417 + 0.634417i −0.949173 0.314756i \(-0.898077\pi\)
0.314756 + 0.949173i \(0.398077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.462378i 0.00154642i
\(300\) 0 0
\(301\) −607.843 −2.01941
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 184.175 + 184.175i 0.599920 + 0.599920i 0.940291 0.340371i \(-0.110553\pi\)
−0.340371 + 0.940291i \(0.610553\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −191.522 −0.615826 −0.307913 0.951415i \(-0.599631\pi\)
−0.307913 + 0.951415i \(0.599631\pi\)
\(312\) 0 0
\(313\) 257.541 257.541i 0.822815 0.822815i −0.163696 0.986511i \(-0.552342\pi\)
0.986511 + 0.163696i \(0.0523415\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 162.518 + 162.518i 0.512674 + 0.512674i 0.915345 0.402671i \(-0.131918\pi\)
−0.402671 + 0.915345i \(0.631918\pi\)
\(318\) 0 0
\(319\) 925.771i 2.90210i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −43.6054 + 43.6054i −0.135001 + 0.135001i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 161.485i 0.490837i
\(330\) 0 0
\(331\) 49.0405 0.148159 0.0740793 0.997252i \(-0.476398\pi\)
0.0740793 + 0.997252i \(0.476398\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.6580 + 17.6580i 0.0523977 + 0.0523977i 0.732820 0.680422i \(-0.238204\pi\)
−0.680422 + 0.732820i \(0.738204\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 904.595 2.65277
\(342\) 0 0
\(343\) −153.199 + 153.199i −0.446646 + 0.446646i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 296.136 + 296.136i 0.853417 + 0.853417i 0.990552 0.137135i \(-0.0437894\pi\)
−0.137135 + 0.990552i \(0.543789\pi\)
\(348\) 0 0
\(349\) 217.733i 0.623877i 0.950102 + 0.311939i \(0.100978\pi\)
−0.950102 + 0.311939i \(0.899022\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 70.0501 70.0501i 0.198442 0.198442i −0.600890 0.799332i \(-0.705187\pi\)
0.799332 + 0.600890i \(0.205187\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 265.093i 0.738422i −0.929346 0.369211i \(-0.879628\pi\)
0.929346 0.369211i \(-0.120372\pi\)
\(360\) 0 0
\(361\) 344.621 0.954628
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −473.377 473.377i −1.28986 1.28986i −0.934872 0.354984i \(-0.884486\pi\)
−0.354984 0.934872i \(-0.615514\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −149.764 −0.403675
\(372\) 0 0
\(373\) −201.623 + 201.623i −0.540544 + 0.540544i −0.923688 0.383144i \(-0.874841\pi\)
0.383144 + 0.923688i \(0.374841\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.78299 6.78299i −0.0179920 0.0179920i
\(378\) 0 0
\(379\) 230.312i 0.607684i −0.952722 0.303842i \(-0.901730\pi\)
0.952722 0.303842i \(-0.0982695\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −312.599 + 312.599i −0.816185 + 0.816185i −0.985553 0.169368i \(-0.945827\pi\)
0.169368 + 0.985553i \(0.445827\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 555.109i 1.42702i 0.700647 + 0.713508i \(0.252895\pi\)
−0.700647 + 0.713508i \(0.747105\pi\)
\(390\) 0 0
\(391\) 39.9876 0.102270
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −221.888 221.888i −0.558911 0.558911i 0.370086 0.928997i \(-0.379328\pi\)
−0.928997 + 0.370086i \(0.879328\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 319.629 0.797079 0.398540 0.917151i \(-0.369517\pi\)
0.398540 + 0.917151i \(0.369517\pi\)
\(402\) 0 0
\(403\) 6.62784 6.62784i 0.0164463 0.0164463i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 361.659 + 361.659i 0.888598 + 0.888598i
\(408\) 0 0
\(409\) 40.1118i 0.0980730i −0.998797 0.0490365i \(-0.984385\pi\)
0.998797 0.0490365i \(-0.0156151\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −52.9720 + 52.9720i −0.128262 + 0.128262i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 345.933i 0.825616i 0.910818 + 0.412808i \(0.135452\pi\)
−0.910818 + 0.412808i \(0.864548\pi\)
\(420\) 0 0
\(421\) −105.186 −0.249849 −0.124925 0.992166i \(-0.539869\pi\)
−0.124925 + 0.992166i \(0.539869\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −637.657 637.657i −1.49334 1.49334i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −147.504 −0.342236 −0.171118 0.985251i \(-0.554738\pi\)
−0.171118 + 0.985251i \(0.554738\pi\)
\(432\) 0 0
\(433\) −202.619 + 202.619i −0.467942 + 0.467942i −0.901247 0.433305i \(-0.857347\pi\)
0.433305 + 0.901247i \(0.357347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.51017 + 7.51017i 0.0171857 + 0.0171857i
\(438\) 0 0
\(439\) 513.562i 1.16985i 0.811089 + 0.584923i \(0.198875\pi\)
−0.811089 + 0.584923i \(0.801125\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −200.016 + 200.016i −0.451503 + 0.451503i −0.895853 0.444350i \(-0.853435\pi\)
0.444350 + 0.895853i \(0.353435\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 387.201i 0.862363i −0.902265 0.431182i \(-0.858097\pi\)
0.902265 0.431182i \(-0.141903\pi\)
\(450\) 0 0
\(451\) −886.603 −1.96586
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 124.992 + 124.992i 0.273505 + 0.273505i 0.830509 0.557005i \(-0.188049\pi\)
−0.557005 + 0.830509i \(0.688049\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 420.024 0.911114 0.455557 0.890207i \(-0.349440\pi\)
0.455557 + 0.890207i \(0.349440\pi\)
\(462\) 0 0
\(463\) −228.184 + 228.184i −0.492839 + 0.492839i −0.909200 0.416361i \(-0.863305\pi\)
0.416361 + 0.909200i \(0.363305\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.4129 + 17.4129i 0.0372867 + 0.0372867i 0.725504 0.688218i \(-0.241607\pi\)
−0.688218 + 0.725504i \(0.741607\pi\)
\(468\) 0 0
\(469\) 564.522i 1.20367i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −857.935 + 857.935i −1.81382 + 1.81382i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 319.260i 0.666514i −0.942836 0.333257i \(-0.891852\pi\)
0.942836 0.333257i \(-0.108148\pi\)
\(480\) 0 0
\(481\) 5.29966 0.0110180
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 276.414 + 276.414i 0.567586 + 0.567586i 0.931452 0.363865i \(-0.118543\pi\)
−0.363865 + 0.931452i \(0.618543\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −42.5613 −0.0866829 −0.0433414 0.999060i \(-0.513800\pi\)
−0.0433414 + 0.999060i \(0.513800\pi\)
\(492\) 0 0
\(493\) −586.610 + 586.610i −1.18988 + 1.18988i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −342.714 342.714i −0.689565 0.689565i
\(498\) 0 0
\(499\) 669.280i 1.34124i −0.741800 0.670621i \(-0.766028\pi\)
0.741800 0.670621i \(-0.233972\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.01493 + 3.01493i −0.00599389 + 0.00599389i −0.710097 0.704103i \(-0.751349\pi\)
0.704103 + 0.710097i \(0.251349\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 506.628i 0.995339i −0.867367 0.497670i \(-0.834189\pi\)
0.867367 0.497670i \(-0.165811\pi\)
\(510\) 0 0
\(511\) −635.241 −1.24313
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −227.927 227.927i −0.440865 0.440865i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −399.589 −0.766966 −0.383483 0.923548i \(-0.625275\pi\)
−0.383483 + 0.923548i \(0.625275\pi\)
\(522\) 0 0
\(523\) 404.156 404.156i 0.772764 0.772764i −0.205824 0.978589i \(-0.565988\pi\)
0.978589 + 0.205824i \(0.0659876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −573.192 573.192i −1.08765 1.08765i
\(528\) 0 0
\(529\) 522.113i 0.986981i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.49602 + 6.49602i −0.0121877 + 0.0121877i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 400.723i 0.743457i
\(540\) 0 0
\(541\) −766.639 −1.41708 −0.708538 0.705672i \(-0.750645\pi\)
−0.708538 + 0.705672i \(0.750645\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 192.460 + 192.460i 0.351846 + 0.351846i 0.860796 0.508950i \(-0.169966\pi\)
−0.508950 + 0.860796i \(0.669966\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −220.345 −0.399901
\(552\) 0 0
\(553\) 92.1121 92.1121i 0.166568 0.166568i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −162.407 162.407i −0.291574 0.291574i 0.546128 0.837702i \(-0.316101\pi\)
−0.837702 + 0.546128i \(0.816101\pi\)
\(558\) 0 0
\(559\) 12.5719i 0.0224901i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 687.682 687.682i 1.22146 1.22146i 0.254346 0.967113i \(-0.418140\pi\)
0.967113 0.254346i \(-0.0818603\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 452.621i 0.795468i 0.917501 + 0.397734i \(0.130203\pi\)
−0.917501 + 0.397734i \(0.869797\pi\)
\(570\) 0 0
\(571\) 8.52498 0.0149299 0.00746496 0.999972i \(-0.497624\pi\)
0.00746496 + 0.999972i \(0.497624\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −271.812 271.812i −0.471078 0.471078i 0.431186 0.902263i \(-0.358095\pi\)
−0.902263 + 0.431186i \(0.858095\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −556.474 −0.957787
\(582\) 0 0
\(583\) −211.383 + 211.383i −0.362577 + 0.362577i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 160.042 + 160.042i 0.272644 + 0.272644i 0.830164 0.557519i \(-0.188247\pi\)
−0.557519 + 0.830164i \(0.688247\pi\)
\(588\) 0 0
\(589\) 215.305i 0.365544i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25.3238 + 25.3238i −0.0427045 + 0.0427045i −0.728137 0.685432i \(-0.759613\pi\)
0.685432 + 0.728137i \(0.259613\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1017.30i 1.69832i 0.528132 + 0.849162i \(0.322893\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(600\) 0 0
\(601\) −322.485 −0.536580 −0.268290 0.963338i \(-0.586459\pi\)
−0.268290 + 0.963338i \(0.586459\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 151.189 + 151.189i 0.249076 + 0.249076i 0.820591 0.571515i \(-0.193644\pi\)
−0.571515 + 0.820591i \(0.693644\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.33998 −0.00546642
\(612\) 0 0
\(613\) −397.727 + 397.727i −0.648821 + 0.648821i −0.952708 0.303887i \(-0.901715\pi\)
0.303887 + 0.952708i \(0.401715\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 657.460 + 657.460i 1.06557 + 1.06557i 0.997693 + 0.0678812i \(0.0216239\pi\)
0.0678812 + 0.997693i \(0.478376\pi\)
\(618\) 0 0
\(619\) 984.228i 1.59003i −0.606590 0.795015i \(-0.707463\pi\)
0.606590 0.795015i \(-0.292537\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.71358 5.71358i 0.00917107 0.00917107i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 458.328i 0.728661i
\(630\) 0 0
\(631\) −242.533 −0.384362 −0.192181 0.981359i \(-0.561556\pi\)
−0.192181 + 0.981359i \(0.561556\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.93604 2.93604i −0.00460917 0.00460917i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −761.727 −1.18834 −0.594171 0.804339i \(-0.702520\pi\)
−0.594171 + 0.804339i \(0.702520\pi\)
\(642\) 0 0
\(643\) −11.3113 + 11.3113i −0.0175914 + 0.0175914i −0.715848 0.698256i \(-0.753960\pi\)
0.698256 + 0.715848i \(0.253960\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −290.292 290.292i −0.448674 0.448674i 0.446240 0.894914i \(-0.352763\pi\)
−0.894914 + 0.446240i \(0.852763\pi\)
\(648\) 0 0
\(649\) 149.534i 0.230407i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 791.306 791.306i 1.21180 1.21180i 0.241368 0.970434i \(-0.422404\pi\)
0.970434 0.241368i \(-0.0775961\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1153.66i 1.75062i −0.483559 0.875312i \(-0.660656\pi\)
0.483559 0.875312i \(-0.339344\pi\)
\(660\) 0 0
\(661\) 1250.76 1.89222 0.946111 0.323842i \(-0.104975\pi\)
0.946111 + 0.323842i \(0.104975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 101.032 + 101.032i 0.151472 + 0.151472i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1800.03 −2.68261
\(672\) 0 0
\(673\) 320.198 320.198i 0.475778 0.475778i −0.428001 0.903778i \(-0.640782\pi\)
0.903778 + 0.428001i \(0.140782\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 105.922 + 105.922i 0.156457 + 0.156457i 0.780995 0.624538i \(-0.214713\pi\)
−0.624538 + 0.780995i \(0.714713\pi\)
\(678\) 0 0
\(679\) 935.692i 1.37804i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 467.606 467.606i 0.684636 0.684636i −0.276405 0.961041i \(-0.589143\pi\)
0.961041 + 0.276405i \(0.0891432\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.09754i 0.00449571i
\(690\) 0 0
\(691\) 47.2980 0.0684487 0.0342243 0.999414i \(-0.489104\pi\)
0.0342243 + 0.999414i \(0.489104\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 561.792 + 561.792i 0.806014 + 0.806014i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −444.721 −0.634409 −0.317204 0.948357i \(-0.602744\pi\)
−0.317204 + 0.948357i \(0.602744\pi\)
\(702\) 0 0
\(703\) 86.0796 86.0796i 0.122446 0.122446i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −298.915 298.915i −0.422793 0.422793i
\(708\) 0 0
\(709\) 996.549i 1.40557i −0.711403 0.702785i \(-0.751940\pi\)
0.711403 0.702785i \(-0.248060\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −98.7212 + 98.7212i −0.138459 + 0.138459i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 319.778i 0.444753i 0.974961 + 0.222377i \(0.0713814\pi\)
−0.974961 + 0.222377i \(0.928619\pi\)
\(720\) 0 0
\(721\) 226.402 0.314011
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 116.716 + 116.716i 0.160545 + 0.160545i 0.782808 0.622263i \(-0.213787\pi\)
−0.622263 + 0.782808i \(0.713787\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1087.25 1.48735
\(732\) 0 0
\(733\) 121.699 121.699i 0.166028 0.166028i −0.619203 0.785231i \(-0.712544\pi\)
0.785231 + 0.619203i \(0.212544\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −796.791 796.791i −1.08113 1.08113i
\(738\) 0 0
\(739\) 498.476i 0.674528i 0.941410 + 0.337264i \(0.109501\pi\)
−0.941410 + 0.337264i \(0.890499\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.9317 13.9317i 0.0187507 0.0187507i −0.697669 0.716420i \(-0.745779\pi\)
0.716420 + 0.697669i \(0.245779\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 831.257i 1.10982i
\(750\) 0 0
\(751\) −148.692 −0.197992 −0.0989962 0.995088i \(-0.531563\pi\)
−0.0989962 + 0.995088i \(0.531563\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −243.978 243.978i −0.322296 0.322296i 0.527352 0.849647i \(-0.323185\pi\)
−0.849647 + 0.527352i \(0.823185\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −838.059 −1.10126 −0.550630 0.834749i \(-0.685613\pi\)
−0.550630 + 0.834749i \(0.685613\pi\)
\(762\) 0 0
\(763\) −783.079 + 783.079i −1.02632 + 1.02632i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.09561 + 1.09561i 0.00142844 + 0.00142844i
\(768\) 0 0
\(769\) 48.7943i 0.0634516i 0.999497 + 0.0317258i \(0.0101003\pi\)
−0.999497 + 0.0317258i \(0.989900\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 349.857 349.857i 0.452596 0.452596i −0.443619 0.896215i \(-0.646306\pi\)
0.896215 + 0.443619i \(0.146306\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 211.023i 0.270889i
\(780\) 0 0
\(781\) −967.442 −1.23872
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 504.294 + 504.294i 0.640780 + 0.640780i 0.950747 0.309967i \(-0.100318\pi\)
−0.309967 + 0.950747i \(0.600318\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1898.45 2.40006
\(792\) 0 0
\(793\) −13.1886 + 13.1886i −0.0166313 + 0.0166313i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −275.451 275.451i −0.345610 0.345610i 0.512862 0.858471i \(-0.328585\pi\)
−0.858471 + 0.512862i \(0.828585\pi\)
\(798\) 0 0
\(799\) 288.850i 0.361514i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −896.606 + 896.606i −1.11657 + 1.11657i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 472.171i 0.583648i −0.956472 0.291824i \(-0.905738\pi\)
0.956472 0.291824i \(-0.0942621\pi\)
\(810\) 0 0
\(811\) 1383.85 1.70636 0.853178 0.521620i \(-0.174672\pi\)
0.853178 + 0.521620i \(0.174672\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 204.200 + 204.200i 0.249938 + 0.249938i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 280.480 0.341632 0.170816 0.985303i \(-0.445360\pi\)
0.170816 + 0.985303i \(0.445360\pi\)
\(822\) 0 0
\(823\) −256.396 + 256.396i −0.311539 + 0.311539i −0.845505 0.533967i \(-0.820701\pi\)
0.533967 + 0.845505i \(0.320701\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 325.679 + 325.679i 0.393808 + 0.393808i 0.876042 0.482234i \(-0.160175\pi\)
−0.482234 + 0.876042i \(0.660175\pi\)
\(828\) 0 0
\(829\) 5.87954i 0.00709232i −0.999994 0.00354616i \(-0.998871\pi\)
0.999994 0.00354616i \(-0.00112878\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −253.916 + 253.916i −0.304822 + 0.304822i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 141.023i 0.168085i −0.996462 0.0840424i \(-0.973217\pi\)
0.996462 0.0840424i \(-0.0267831\pi\)
\(840\) 0 0
\(841\) −2123.24 −2.52466
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1012.74 1012.74i −1.19568 1.19568i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −78.9380 −0.0927591
\(852\) 0 0
\(853\) 322.940 322.940i 0.378593 0.378593i −0.492002 0.870594i \(-0.663735\pi\)
0.870594 + 0.492002i \(0.163735\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 277.382 + 277.382i 0.323667 + 0.323667i 0.850172 0.526505i \(-0.176498\pi\)
−0.526505 + 0.850172i \(0.676498\pi\)
\(858\) 0 0
\(859\) 530.257i 0.617295i 0.951176 + 0.308648i \(0.0998764\pi\)
−0.951176 + 0.308648i \(0.900124\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −725.484 + 725.484i −0.840653 + 0.840653i −0.988944 0.148291i \(-0.952623\pi\)
0.148291 + 0.988944i \(0.452623\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 260.022i 0.299220i
\(870\) 0 0
\(871\) −11.6760 −0.0134052
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −114.761 114.761i −0.130856 0.130856i 0.638645 0.769501i \(-0.279495\pi\)
−0.769501 + 0.638645i \(0.779495\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 582.431 0.661102 0.330551 0.943788i \(-0.392765\pi\)
0.330551 + 0.943788i \(0.392765\pi\)
\(882\) 0 0
\(883\) −1140.67 + 1140.67i −1.29182 + 1.29182i −0.358153 + 0.933663i \(0.616594\pi\)
−0.933663 + 0.358153i \(0.883406\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −910.472 910.472i −1.02646 1.02646i −0.999640 0.0268221i \(-0.991461\pi\)
−0.0268221 0.999640i \(-0.508539\pi\)
\(888\) 0 0
\(889\) 1280.22i 1.44007i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −54.2496 + 54.2496i −0.0607498 + 0.0607498i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2896.44i 3.22184i
\(900\) 0 0
\(901\) 267.883 0.297318
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 928.527 + 928.527i 1.02373 + 1.02373i 0.999711 + 0.0240232i \(0.00764757\pi\)
0.0240232 + 0.999711i \(0.492352\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −751.939 −0.825400 −0.412700 0.910867i \(-0.635414\pi\)
−0.412700 + 0.910867i \(0.635414\pi\)
\(912\) 0 0
\(913\) −785.431 + 785.431i −0.860275 + 0.860275i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −619.766 619.766i −0.675862 0.675862i
\(918\) 0 0
\(919\) 612.491i 0.666476i 0.942843 + 0.333238i \(0.108141\pi\)
−0.942843 + 0.333238i \(0.891859\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.08831 + 7.08831i −0.00767965 + 0.00767965i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 487.299i 0.524541i 0.964994 + 0.262271i \(0.0844713\pi\)
−0.964994 + 0.262271i \(0.915529\pi\)
\(930\) 0 0
\(931\) −95.3773 −0.102446
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −943.521 943.521i −1.00696 1.00696i −0.999976 0.00698356i \(-0.997777\pi\)
−0.00698356 0.999976i \(-0.502223\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −243.515 −0.258784 −0.129392 0.991594i \(-0.541302\pi\)
−0.129392 + 0.991594i \(0.541302\pi\)
\(942\) 0 0
\(943\) 96.7577 96.7577i 0.102606 0.102606i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 792.978 + 792.978i 0.837358 + 0.837358i 0.988510 0.151153i \(-0.0482985\pi\)
−0.151153 + 0.988510i \(0.548299\pi\)
\(948\) 0 0
\(949\) 13.1386i 0.0138447i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −77.6634 + 77.6634i −0.0814936 + 0.0814936i −0.746679 0.665185i \(-0.768353\pi\)
0.665185 + 0.746679i \(0.268353\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1020.49i 1.06412i
\(960\) 0 0
\(961\) 1869.19 1.94504
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −294.078 294.078i −0.304113 0.304113i 0.538507 0.842621i \(-0.318988\pi\)
−0.842621 + 0.538507i \(0.818988\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 322.263 0.331888 0.165944 0.986135i \(-0.446933\pi\)
0.165944 + 0.986135i \(0.446933\pi\)
\(972\) 0 0
\(973\) 1470.05 1470.05i 1.51084 1.51084i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 739.522 + 739.522i 0.756932 + 0.756932i 0.975763 0.218831i \(-0.0702243\pi\)
−0.218831 + 0.975763i \(0.570224\pi\)
\(978\) 0 0
\(979\) 16.1288i 0.0164747i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −767.218 + 767.218i −0.780486 + 0.780486i −0.979913 0.199427i \(-0.936092\pi\)
0.199427 + 0.979913i \(0.436092\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 187.258i 0.189341i
\(990\) 0 0
\(991\) 908.418 0.916668 0.458334 0.888780i \(-0.348446\pi\)
0.458334 + 0.888780i \(0.348446\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 397.062 + 397.062i 0.398257 + 0.398257i 0.877618 0.479361i \(-0.159132\pi\)
−0.479361 + 0.877618i \(0.659132\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.3.v.t.1657.2 8
3.2 odd 2 600.3.u.h.457.3 8
5.2 odd 4 360.3.v.f.73.1 8
5.3 odd 4 inner 1800.3.v.t.793.2 8
5.4 even 2 360.3.v.f.217.1 8
12.11 even 2 1200.3.bg.q.1057.2 8
15.2 even 4 120.3.u.b.73.2 8
15.8 even 4 600.3.u.h.193.3 8
15.14 odd 2 120.3.u.b.97.2 yes 8
20.7 even 4 720.3.bh.o.433.1 8
20.19 odd 2 720.3.bh.o.577.1 8
60.23 odd 4 1200.3.bg.q.193.2 8
60.47 odd 4 240.3.bg.e.193.4 8
60.59 even 2 240.3.bg.e.97.4 8
120.29 odd 2 960.3.bg.l.577.3 8
120.59 even 2 960.3.bg.k.577.1 8
120.77 even 4 960.3.bg.l.193.3 8
120.107 odd 4 960.3.bg.k.193.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.u.b.73.2 8 15.2 even 4
120.3.u.b.97.2 yes 8 15.14 odd 2
240.3.bg.e.97.4 8 60.59 even 2
240.3.bg.e.193.4 8 60.47 odd 4
360.3.v.f.73.1 8 5.2 odd 4
360.3.v.f.217.1 8 5.4 even 2
600.3.u.h.193.3 8 15.8 even 4
600.3.u.h.457.3 8 3.2 odd 2
720.3.bh.o.433.1 8 20.7 even 4
720.3.bh.o.577.1 8 20.19 odd 2
960.3.bg.k.193.1 8 120.107 odd 4
960.3.bg.k.577.1 8 120.59 even 2
960.3.bg.l.193.3 8 120.77 even 4
960.3.bg.l.577.3 8 120.29 odd 2
1200.3.bg.q.193.2 8 60.23 odd 4
1200.3.bg.q.1057.2 8 12.11 even 2
1800.3.v.t.793.2 8 5.3 odd 4 inner
1800.3.v.t.1657.2 8 1.1 even 1 trivial