L(s) = 1 | − 2-s + 9·9-s − 11-s − 9·18-s − 19-s + 22-s + 9·25-s − 31-s + 38-s − 43-s + 9·49-s − 9·50-s − 53-s − 59-s − 61-s + 62-s + 45·81-s + 86-s − 89-s − 9·98-s − 9·99-s − 103-s + 106-s − 107-s − 109-s + 118-s + 122-s + ⋯ |
L(s) = 1 | − 2-s + 9·9-s − 11-s − 9·18-s − 19-s + 22-s + 9·25-s − 31-s + 38-s − 43-s + 9·49-s − 9·50-s − 53-s − 59-s − 61-s + 62-s + 45·81-s + 86-s − 89-s − 9·98-s − 9·99-s − 103-s + 106-s − 107-s − 109-s + 118-s + 122-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3343^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3343^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(7.270154845\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.270154845\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3343 | \( 1+O(T) \) |
good | 2 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 3 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 5 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 7 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 11 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 13 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 17 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 19 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 23 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 29 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 31 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 37 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 41 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 43 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 47 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 53 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 59 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 61 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 67 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 71 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 73 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 79 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 83 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 89 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} + T^{17} + T^{18} \) |
| 97 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{18} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.44119621590577754522305425094, −3.35842119039145512656534998808, −3.35767279839851153005992813503, −3.18347522635212054020649452082, −3.13340014282033743856777523966, −2.87591866827579735819492635774, −2.68606942113178154329191009274, −2.62985274516886741972276610614, −2.62172026552413751554055710225, −2.50820128304426170633127938224, −2.48907637395639158098499668052, −2.07739599486409345876950567844, −2.06165720715763890207933870877, −2.04467322613614525190493885846, −1.78986516130767627794506068018, −1.71718114766405001909206501927, −1.67484527200720915243438708984, −1.53693588765050902039748055037, −1.21134958734021936250761052401, −1.11700597789192421439793534356, −1.01497794738284729244727139034, −0.991145402159650204754095168913, −0.987065152202113329429940796427, −0.851305936619547433527655763181, −0.809902879891093272743606034636,
0.809902879891093272743606034636, 0.851305936619547433527655763181, 0.987065152202113329429940796427, 0.991145402159650204754095168913, 1.01497794738284729244727139034, 1.11700597789192421439793534356, 1.21134958734021936250761052401, 1.53693588765050902039748055037, 1.67484527200720915243438708984, 1.71718114766405001909206501927, 1.78986516130767627794506068018, 2.04467322613614525190493885846, 2.06165720715763890207933870877, 2.07739599486409345876950567844, 2.48907637395639158098499668052, 2.50820128304426170633127938224, 2.62172026552413751554055710225, 2.62985274516886741972276610614, 2.68606942113178154329191009274, 2.87591866827579735819492635774, 3.13340014282033743856777523966, 3.18347522635212054020649452082, 3.35767279839851153005992813503, 3.35842119039145512656534998808, 3.44119621590577754522305425094
Plot not available for L-functions of degree greater than 10.