L(s) = 1 | − 7-s + 2i·11-s − 25-s + 2i·29-s + 49-s + 2i·53-s − 2i·77-s + 2·79-s − 2i·107-s + ⋯ |
L(s) = 1 | − 7-s + 2i·11-s − 25-s + 2i·29-s + 49-s + 2i·53-s − 2i·77-s + 2·79-s − 2i·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8253296309\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8253296309\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 5 | \( 1 + T^{2} \) |
| 11 | \( 1 - 2iT - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 2iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.495310512200955285690241385389, −9.014765985635509530895120500123, −7.80306595517540421809179504285, −7.14006411746874194488288859304, −6.55357011788315050274679739283, −5.53941744994314085129589988784, −4.63944256059288244050083158848, −3.79327996602954626710338760874, −2.73611361457109315837454974343, −1.66556939907532007794522363574,
0.58263347340642125748447033325, 2.35225331424319618699330017654, 3.36931326510326565572313214757, 3.95556161752243989093016531374, 5.33046400505539845807778232187, 6.09360191673279763545066861955, 6.52773866848835795180167618863, 7.74788973017738012710123004685, 8.337619330154305861744496684188, 9.184846187043044996609270817019