L(s) = 1 | − 7-s + 2i·11-s − 25-s + 2i·29-s + 49-s + 2i·53-s − 2i·77-s + 2·79-s − 2i·107-s + ⋯ |
L(s) = 1 | − 7-s + 2i·11-s − 25-s + 2i·29-s + 49-s + 2i·53-s − 2i·77-s + 2·79-s − 2i·107-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)−iΛ(1−s)
Λ(s)=(=(2016s/2ΓC(s)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
−i
|
Analytic conductor: |
1.00611 |
Root analytic conductor: |
1.00305 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :0), −i)
|
Particular Values
L(21) |
≈ |
0.8253296309 |
L(21) |
≈ |
0.8253296309 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1+T2 |
| 11 | 1−2iT−T2 |
| 13 | 1+T2 |
| 17 | 1−T2 |
| 19 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1−2iT−T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1−2iT−T2 |
| 59 | 1+T2 |
| 61 | 1+T2 |
| 67 | 1−T2 |
| 71 | 1+T2 |
| 73 | 1−T2 |
| 79 | 1−2T+T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.495310512200955285690241385389, −9.014765985635509530895120500123, −7.80306595517540421809179504285, −7.14006411746874194488288859304, −6.55357011788315050274679739283, −5.53941744994314085129589988784, −4.63944256059288244050083158848, −3.79327996602954626710338760874, −2.73611361457109315837454974343, −1.66556939907532007794522363574,
0.58263347340642125748447033325, 2.35225331424319618699330017654, 3.36931326510326565572313214757, 3.95556161752243989093016531374, 5.33046400505539845807778232187, 6.09360191673279763545066861955, 6.52773866848835795180167618863, 7.74788973017738012710123004685, 8.337619330154305861744496684188, 9.184846187043044996609270817019