Properties

Label 2-1014-13.12-c1-0-2
Degree $2$
Conductor $1014$
Sign $0.0304 - 0.999i$
Analytic cond. $8.09683$
Root an. cond. $2.84549$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 3-s − 4-s + 4.04i·5-s i·6-s − 0.692i·7-s + i·8-s + 9-s + 4.04·10-s + 4.85i·11-s − 12-s − 0.692·14-s + 4.04i·15-s + 16-s − 7.38·17-s i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577·3-s − 0.5·4-s + 1.81i·5-s − 0.408i·6-s − 0.261i·7-s + 0.353i·8-s + 0.333·9-s + 1.28·10-s + 1.46i·11-s − 0.288·12-s − 0.184·14-s + 1.04i·15-s + 0.250·16-s − 1.79·17-s − 0.235i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0304 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0304 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1014\)    =    \(2 \cdot 3 \cdot 13^{2}\)
Sign: $0.0304 - 0.999i$
Analytic conductor: \(8.09683\)
Root analytic conductor: \(2.84549\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1014} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1014,\ (\ :1/2),\ 0.0304 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.311680798\)
\(L(\frac12)\) \(\approx\) \(1.311680798\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 4.04iT - 5T^{2} \)
7 \( 1 + 0.692iT - 7T^{2} \)
11 \( 1 - 4.85iT - 11T^{2} \)
17 \( 1 + 7.38T + 17T^{2} \)
19 \( 1 + 1.78iT - 19T^{2} \)
23 \( 1 + 5.10T + 23T^{2} \)
29 \( 1 + 3.34T + 29T^{2} \)
31 \( 1 - 0.972iT - 31T^{2} \)
37 \( 1 + 1.28iT - 37T^{2} \)
41 \( 1 - 1.50iT - 41T^{2} \)
43 \( 1 - 8.31T + 43T^{2} \)
47 \( 1 - 7.20iT - 47T^{2} \)
53 \( 1 - 13.4T + 53T^{2} \)
59 \( 1 + 1.30iT - 59T^{2} \)
61 \( 1 + 0.396T + 61T^{2} \)
67 \( 1 - 6.05iT - 67T^{2} \)
71 \( 1 + 1.32iT - 71T^{2} \)
73 \( 1 - 7.65iT - 73T^{2} \)
79 \( 1 + 8.33T + 79T^{2} \)
83 \( 1 - 15.3iT - 83T^{2} \)
89 \( 1 + 3.10iT - 89T^{2} \)
97 \( 1 + 8.54iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18309634630888290225387004116, −9.624030967868472264902246746072, −8.666359133629152854343203103407, −7.38757951516034581991644915916, −7.10649551024888338897072314165, −6.05075647708314483753185269432, −4.44576254840836318438154960731, −3.82253387853839169425188470607, −2.54203323910779082045144166718, −2.13397469367192747351334117366, 0.53068843562592457290458618166, 2.06510733659147620384261976194, 3.77955172827098274832144802424, 4.48838879773782674869707215619, 5.53731470480394207642060446762, 6.13491554949825851366793948114, 7.47198525089832125550909266730, 8.365398230448837643681388581185, 8.798267522111578953997592293996, 9.197688213805736506823808132532

Graph of the $Z$-function along the critical line