L(s) = 1 | + (−1.28 − 2.21i)3-s − 3.56·5-s + (1.28 − 2.21i)7-s + (−1.78 + 3.08i)9-s + (−1.28 − 2.21i)11-s + (3.34 + 1.35i)13-s + (4.56 + 7.90i)15-s + (2.5 − 4.33i)17-s + (1.28 − 2.21i)19-s − 6.56·21-s + (1.84 + 3.19i)23-s + 7.68·25-s + 1.43·27-s + (2.5 + 4.33i)29-s − 8·31-s + ⋯ |
L(s) = 1 | + (−0.739 − 1.28i)3-s − 1.59·5-s + (0.484 − 0.838i)7-s + (−0.593 + 1.02i)9-s + (−0.386 − 0.668i)11-s + (0.926 + 0.375i)13-s + (1.17 + 2.03i)15-s + (0.606 − 1.05i)17-s + (0.293 − 0.508i)19-s − 1.43·21-s + (0.384 + 0.665i)23-s + 1.53·25-s + 0.276·27-s + (0.464 + 0.804i)29-s − 1.43·31-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(−0.597+0.802i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(−0.597+0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
−0.597+0.802i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :1/2), −0.597+0.802i)
|
Particular Values
L(1) |
≈ |
0.273861−0.545241i |
L(21) |
≈ |
0.273861−0.545241i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−3.34−1.35i)T |
good | 3 | 1+(1.28+2.21i)T+(−1.5+2.59i)T2 |
| 5 | 1+3.56T+5T2 |
| 7 | 1+(−1.28+2.21i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1.28+2.21i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.5+4.33i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.28+2.21i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.84−3.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.5−4.33i)T+(−14.5+25.1i)T2 |
| 31 | 1+8T+31T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(4.62+8.00i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.28+5.68i)T+(−21.5−37.2i)T2 |
| 47 | 1−4T+47T2 |
| 53 | 1−4.43T+53T2 |
| 59 | 1+(−1.28+2.21i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.62+6.27i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−4.71−8.17i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.84−6.65i)T+(−35.5−61.4i)T2 |
| 73 | 1+1.31T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−2.24T+83T2 |
| 89 | 1+(−4.84−8.38i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.40−2.43i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.32256368666083898785419265553, −12.20264343955088622458999806498, −11.40427778897318641134569004509, −10.88451733391917141342322231506, −8.649601413668202888360217879250, −7.47728287435516302733903595920, −7.07870713237269886047931264198, −5.34556012197174859039546041200, −3.67044517799898412177113530074, −0.824650638140039589805644693019,
3.62620327595018432657970314984, 4.65923226360846828249036996429, 5.84348520248895630808699798970, 7.75463579543731121146012664390, 8.695766312726768034377928823489, 10.17731662745849353319352739485, 11.05986231834894520949000910039, 11.81157797143478261316024493523, 12.71389017682631377227128545157, 14.85003394814230466269313400817