Properties

Label 104.2.i.b.81.1
Level $104$
Weight $2$
Character 104.81
Analytic conductor $0.830$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(9,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(1.28078 + 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 104.81
Dual form 104.2.i.b.9.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 - 2.21837i) q^{3} -3.56155 q^{5} +(1.28078 - 2.21837i) q^{7} +(-1.78078 + 3.08440i) q^{9} +(-1.28078 - 2.21837i) q^{11} +(3.34233 + 1.35234i) q^{13} +(4.56155 + 7.90084i) q^{15} +(2.50000 - 4.33013i) q^{17} +(1.28078 - 2.21837i) q^{19} -6.56155 q^{21} +(1.84233 + 3.19101i) q^{23} +7.68466 q^{25} +1.43845 q^{27} +(2.50000 + 4.33013i) q^{29} -8.00000 q^{31} +(-3.28078 + 5.68247i) q^{33} +(-4.56155 + 7.90084i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-1.28078 - 9.14657i) q^{39} +(-4.62311 - 8.00745i) q^{41} +(3.28078 - 5.68247i) q^{43} +(6.34233 - 10.9852i) q^{45} +4.00000 q^{47} +(0.219224 + 0.379706i) q^{49} -12.8078 q^{51} +4.43845 q^{53} +(4.56155 + 7.90084i) q^{55} -6.56155 q^{57} +(1.28078 - 2.21837i) q^{59} +(3.62311 - 6.27540i) q^{61} +(4.56155 + 7.90084i) q^{63} +(-11.9039 - 4.81645i) q^{65} +(4.71922 + 8.17394i) q^{67} +(4.71922 - 8.17394i) q^{69} +(-3.84233 + 6.65511i) q^{71} -1.31534 q^{73} +(-9.84233 - 17.0474i) q^{75} -6.56155 q^{77} -4.00000 q^{79} +(3.50000 + 6.06218i) q^{81} +2.24621 q^{83} +(-8.90388 + 15.4220i) q^{85} +(6.40388 - 11.0918i) q^{87} +(4.84233 + 8.38716i) q^{89} +(7.28078 - 5.68247i) q^{91} +(10.2462 + 17.7470i) q^{93} +(-4.56155 + 7.90084i) q^{95} +(-1.40388 + 2.43160i) q^{97} +9.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 6 q^{5} + q^{7} - 3 q^{9} - q^{11} + q^{13} + 10 q^{15} + 10 q^{17} + q^{19} - 18 q^{21} - 5 q^{23} + 6 q^{25} + 14 q^{27} + 10 q^{29} - 32 q^{31} - 9 q^{33} - 10 q^{35} + 2 q^{37} - q^{39}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28078 2.21837i −0.739457 1.28078i −0.952740 0.303786i \(-0.901749\pi\)
0.213284 0.976990i \(-0.431584\pi\)
\(4\) 0 0
\(5\) −3.56155 −1.59277 −0.796387 0.604787i \(-0.793258\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 0 0
\(7\) 1.28078 2.21837i 0.484088 0.838465i −0.515745 0.856742i \(-0.672485\pi\)
0.999833 + 0.0182772i \(0.00581813\pi\)
\(8\) 0 0
\(9\) −1.78078 + 3.08440i −0.593592 + 1.02813i
\(10\) 0 0
\(11\) −1.28078 2.21837i −0.386169 0.668864i 0.605762 0.795646i \(-0.292868\pi\)
−0.991931 + 0.126782i \(0.959535\pi\)
\(12\) 0 0
\(13\) 3.34233 + 1.35234i 0.926995 + 0.375073i
\(14\) 0 0
\(15\) 4.56155 + 7.90084i 1.17779 + 2.03999i
\(16\) 0 0
\(17\) 2.50000 4.33013i 0.606339 1.05021i −0.385499 0.922708i \(-0.625971\pi\)
0.991838 0.127502i \(-0.0406959\pi\)
\(18\) 0 0
\(19\) 1.28078 2.21837i 0.293830 0.508929i −0.680882 0.732393i \(-0.738403\pi\)
0.974712 + 0.223464i \(0.0717366\pi\)
\(20\) 0 0
\(21\) −6.56155 −1.43185
\(22\) 0 0
\(23\) 1.84233 + 3.19101i 0.384152 + 0.665371i 0.991651 0.128949i \(-0.0411605\pi\)
−0.607499 + 0.794320i \(0.707827\pi\)
\(24\) 0 0
\(25\) 7.68466 1.53693
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) −3.28078 + 5.68247i −0.571110 + 0.989191i
\(34\) 0 0
\(35\) −4.56155 + 7.90084i −0.771043 + 1.33549i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −1.28078 9.14657i −0.205088 1.46462i
\(40\) 0 0
\(41\) −4.62311 8.00745i −0.722008 1.25055i −0.960194 0.279335i \(-0.909886\pi\)
0.238186 0.971220i \(-0.423447\pi\)
\(42\) 0 0
\(43\) 3.28078 5.68247i 0.500314 0.866569i −0.499686 0.866206i \(-0.666551\pi\)
1.00000 0.000362281i \(-0.000115318\pi\)
\(44\) 0 0
\(45\) 6.34233 10.9852i 0.945459 1.63758i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 0.219224 + 0.379706i 0.0313177 + 0.0542438i
\(50\) 0 0
\(51\) −12.8078 −1.79345
\(52\) 0 0
\(53\) 4.43845 0.609668 0.304834 0.952406i \(-0.401399\pi\)
0.304834 + 0.952406i \(0.401399\pi\)
\(54\) 0 0
\(55\) 4.56155 + 7.90084i 0.615080 + 1.06535i
\(56\) 0 0
\(57\) −6.56155 −0.869099
\(58\) 0 0
\(59\) 1.28078 2.21837i 0.166743 0.288807i −0.770530 0.637404i \(-0.780008\pi\)
0.937273 + 0.348597i \(0.113342\pi\)
\(60\) 0 0
\(61\) 3.62311 6.27540i 0.463891 0.803483i −0.535260 0.844688i \(-0.679786\pi\)
0.999151 + 0.0412046i \(0.0131195\pi\)
\(62\) 0 0
\(63\) 4.56155 + 7.90084i 0.574702 + 0.995412i
\(64\) 0 0
\(65\) −11.9039 4.81645i −1.47649 0.597407i
\(66\) 0 0
\(67\) 4.71922 + 8.17394i 0.576545 + 0.998605i 0.995872 + 0.0907698i \(0.0289328\pi\)
−0.419327 + 0.907835i \(0.637734\pi\)
\(68\) 0 0
\(69\) 4.71922 8.17394i 0.568128 0.984026i
\(70\) 0 0
\(71\) −3.84233 + 6.65511i −0.456001 + 0.789816i −0.998745 0.0500816i \(-0.984052\pi\)
0.542745 + 0.839898i \(0.317385\pi\)
\(72\) 0 0
\(73\) −1.31534 −0.153949 −0.0769745 0.997033i \(-0.524526\pi\)
−0.0769745 + 0.997033i \(0.524526\pi\)
\(74\) 0 0
\(75\) −9.84233 17.0474i −1.13649 1.96847i
\(76\) 0 0
\(77\) −6.56155 −0.747758
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 3.50000 + 6.06218i 0.388889 + 0.673575i
\(82\) 0 0
\(83\) 2.24621 0.246554 0.123277 0.992372i \(-0.460660\pi\)
0.123277 + 0.992372i \(0.460660\pi\)
\(84\) 0 0
\(85\) −8.90388 + 15.4220i −0.965762 + 1.67275i
\(86\) 0 0
\(87\) 6.40388 11.0918i 0.686568 1.18917i
\(88\) 0 0
\(89\) 4.84233 + 8.38716i 0.513286 + 0.889037i 0.999881 + 0.0154098i \(0.00490527\pi\)
−0.486595 + 0.873627i \(0.661761\pi\)
\(90\) 0 0
\(91\) 7.28078 5.68247i 0.763233 0.595685i
\(92\) 0 0
\(93\) 10.2462 + 17.7470i 1.06248 + 1.84027i
\(94\) 0 0
\(95\) −4.56155 + 7.90084i −0.468005 + 0.810609i
\(96\) 0 0
\(97\) −1.40388 + 2.43160i −0.142543 + 0.246891i −0.928453 0.371449i \(-0.878861\pi\)
0.785911 + 0.618340i \(0.212194\pi\)
\(98\) 0 0
\(99\) 9.12311 0.916907
\(100\) 0 0
\(101\) −2.62311 4.54335i −0.261009 0.452080i 0.705501 0.708708i \(-0.250722\pi\)
−0.966510 + 0.256628i \(0.917388\pi\)
\(102\) 0 0
\(103\) 14.2462 1.40372 0.701860 0.712314i \(-0.252353\pi\)
0.701860 + 0.712314i \(0.252353\pi\)
\(104\) 0 0
\(105\) 23.3693 2.28061
\(106\) 0 0
\(107\) 1.84233 + 3.19101i 0.178105 + 0.308486i 0.941231 0.337763i \(-0.109670\pi\)
−0.763127 + 0.646249i \(0.776337\pi\)
\(108\) 0 0
\(109\) 8.24621 0.789844 0.394922 0.918715i \(-0.370772\pi\)
0.394922 + 0.918715i \(0.370772\pi\)
\(110\) 0 0
\(111\) 1.28078 2.21837i 0.121566 0.210558i
\(112\) 0 0
\(113\) −4.62311 + 8.00745i −0.434905 + 0.753278i −0.997288 0.0735992i \(-0.976551\pi\)
0.562383 + 0.826877i \(0.309885\pi\)
\(114\) 0 0
\(115\) −6.56155 11.3649i −0.611868 1.05979i
\(116\) 0 0
\(117\) −10.1231 + 7.90084i −0.935881 + 0.730433i
\(118\) 0 0
\(119\) −6.40388 11.0918i −0.587043 1.01679i
\(120\) 0 0
\(121\) 2.21922 3.84381i 0.201748 0.349437i
\(122\) 0 0
\(123\) −11.8423 + 20.5115i −1.06779 + 1.84946i
\(124\) 0 0
\(125\) −9.56155 −0.855211
\(126\) 0 0
\(127\) −6.40388 11.0918i −0.568253 0.984242i −0.996739 0.0806942i \(-0.974286\pi\)
0.428486 0.903548i \(-0.359047\pi\)
\(128\) 0 0
\(129\) −16.8078 −1.47984
\(130\) 0 0
\(131\) 18.2462 1.59418 0.797089 0.603861i \(-0.206372\pi\)
0.797089 + 0.603861i \(0.206372\pi\)
\(132\) 0 0
\(133\) −3.28078 5.68247i −0.284479 0.492733i
\(134\) 0 0
\(135\) −5.12311 −0.440927
\(136\) 0 0
\(137\) 10.7462 18.6130i 0.918111 1.59021i 0.115829 0.993269i \(-0.463048\pi\)
0.802282 0.596945i \(-0.203619\pi\)
\(138\) 0 0
\(139\) −9.84233 + 17.0474i −0.834815 + 1.44594i 0.0593651 + 0.998236i \(0.481092\pi\)
−0.894181 + 0.447706i \(0.852241\pi\)
\(140\) 0 0
\(141\) −5.12311 8.87348i −0.431443 0.747282i
\(142\) 0 0
\(143\) −1.28078 9.14657i −0.107104 0.764875i
\(144\) 0 0
\(145\) −8.90388 15.4220i −0.739427 1.28073i
\(146\) 0 0
\(147\) 0.561553 0.972638i 0.0463161 0.0802218i
\(148\) 0 0
\(149\) −6.62311 + 11.4716i −0.542586 + 0.939786i 0.456169 + 0.889893i \(0.349221\pi\)
−0.998755 + 0.0498931i \(0.984112\pi\)
\(150\) 0 0
\(151\) −12.4924 −1.01662 −0.508309 0.861174i \(-0.669729\pi\)
−0.508309 + 0.861174i \(0.669729\pi\)
\(152\) 0 0
\(153\) 8.90388 + 15.4220i 0.719836 + 1.24679i
\(154\) 0 0
\(155\) 28.4924 2.28857
\(156\) 0 0
\(157\) −17.8078 −1.42121 −0.710607 0.703589i \(-0.751580\pi\)
−0.710607 + 0.703589i \(0.751580\pi\)
\(158\) 0 0
\(159\) −5.68466 9.84612i −0.450823 0.780848i
\(160\) 0 0
\(161\) 9.43845 0.743854
\(162\) 0 0
\(163\) −2.96543 + 5.13628i −0.232271 + 0.402305i −0.958476 0.285173i \(-0.907949\pi\)
0.726205 + 0.687478i \(0.241282\pi\)
\(164\) 0 0
\(165\) 11.6847 20.2384i 0.909649 1.57556i
\(166\) 0 0
\(167\) 2.71922 + 4.70983i 0.210420 + 0.364458i 0.951846 0.306577i \(-0.0991836\pi\)
−0.741426 + 0.671034i \(0.765850\pi\)
\(168\) 0 0
\(169\) 9.34233 + 9.03996i 0.718641 + 0.695382i
\(170\) 0 0
\(171\) 4.56155 + 7.90084i 0.348831 + 0.604192i
\(172\) 0 0
\(173\) 7.96543 13.7965i 0.605601 1.04893i −0.386355 0.922350i \(-0.626266\pi\)
0.991956 0.126581i \(-0.0404005\pi\)
\(174\) 0 0
\(175\) 9.84233 17.0474i 0.744010 1.28866i
\(176\) 0 0
\(177\) −6.56155 −0.493197
\(178\) 0 0
\(179\) −2.15767 3.73720i −0.161272 0.279331i 0.774053 0.633121i \(-0.218226\pi\)
−0.935325 + 0.353789i \(0.884893\pi\)
\(180\) 0 0
\(181\) −9.80776 −0.729005 −0.364503 0.931202i \(-0.618761\pi\)
−0.364503 + 0.931202i \(0.618761\pi\)
\(182\) 0 0
\(183\) −18.5616 −1.37211
\(184\) 0 0
\(185\) −1.78078 3.08440i −0.130925 0.226769i
\(186\) 0 0
\(187\) −12.8078 −0.936596
\(188\) 0 0
\(189\) 1.84233 3.19101i 0.134010 0.232112i
\(190\) 0 0
\(191\) 2.15767 3.73720i 0.156124 0.270414i −0.777344 0.629076i \(-0.783434\pi\)
0.933468 + 0.358662i \(0.116767\pi\)
\(192\) 0 0
\(193\) −1.50000 2.59808i −0.107972 0.187014i 0.806976 0.590584i \(-0.201102\pi\)
−0.914949 + 0.403570i \(0.867769\pi\)
\(194\) 0 0
\(195\) 4.56155 + 32.5760i 0.326660 + 2.33282i
\(196\) 0 0
\(197\) −1.15767 2.00514i −0.0824806 0.142861i 0.821834 0.569727i \(-0.192951\pi\)
−0.904315 + 0.426866i \(0.859618\pi\)
\(198\) 0 0
\(199\) −4.71922 + 8.17394i −0.334537 + 0.579435i −0.983396 0.181474i \(-0.941913\pi\)
0.648859 + 0.760909i \(0.275247\pi\)
\(200\) 0 0
\(201\) 12.0885 20.9380i 0.852660 1.47685i
\(202\) 0 0
\(203\) 12.8078 0.898929
\(204\) 0 0
\(205\) 16.4654 + 28.5190i 1.15000 + 1.99185i
\(206\) 0 0
\(207\) −13.1231 −0.912119
\(208\) 0 0
\(209\) −6.56155 −0.453872
\(210\) 0 0
\(211\) −6.15767 10.6654i −0.423912 0.734236i 0.572407 0.819970i \(-0.306010\pi\)
−0.996318 + 0.0857336i \(0.972677\pi\)
\(212\) 0 0
\(213\) 19.6847 1.34877
\(214\) 0 0
\(215\) −11.6847 + 20.2384i −0.796887 + 1.38025i
\(216\) 0 0
\(217\) −10.2462 + 17.7470i −0.695558 + 1.20474i
\(218\) 0 0
\(219\) 1.68466 + 2.91791i 0.113839 + 0.197174i
\(220\) 0 0
\(221\) 14.2116 11.0918i 0.955979 0.746119i
\(222\) 0 0
\(223\) 1.84233 + 3.19101i 0.123371 + 0.213686i 0.921095 0.389337i \(-0.127296\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(224\) 0 0
\(225\) −13.6847 + 23.7025i −0.912311 + 1.58017i
\(226\) 0 0
\(227\) 3.52699 6.10892i 0.234094 0.405463i −0.724915 0.688839i \(-0.758121\pi\)
0.959009 + 0.283375i \(0.0914542\pi\)
\(228\) 0 0
\(229\) −4.24621 −0.280598 −0.140299 0.990109i \(-0.544806\pi\)
−0.140299 + 0.990109i \(0.544806\pi\)
\(230\) 0 0
\(231\) 8.40388 + 14.5560i 0.552935 + 0.957711i
\(232\) 0 0
\(233\) 4.24621 0.278179 0.139089 0.990280i \(-0.455583\pi\)
0.139089 + 0.990280i \(0.455583\pi\)
\(234\) 0 0
\(235\) −14.2462 −0.929320
\(236\) 0 0
\(237\) 5.12311 + 8.87348i 0.332781 + 0.576394i
\(238\) 0 0
\(239\) 1.75379 0.113443 0.0567216 0.998390i \(-0.481935\pi\)
0.0567216 + 0.998390i \(0.481935\pi\)
\(240\) 0 0
\(241\) 12.7462 22.0771i 0.821056 1.42211i −0.0838412 0.996479i \(-0.526719\pi\)
0.904897 0.425631i \(-0.139948\pi\)
\(242\) 0 0
\(243\) 11.1231 19.2658i 0.713548 1.23590i
\(244\) 0 0
\(245\) −0.780776 1.35234i −0.0498820 0.0863981i
\(246\) 0 0
\(247\) 7.28078 5.68247i 0.463265 0.361567i
\(248\) 0 0
\(249\) −2.87689 4.98293i −0.182316 0.315780i
\(250\) 0 0
\(251\) −14.9654 + 25.9209i −0.944610 + 1.63611i −0.188079 + 0.982154i \(0.560226\pi\)
−0.756530 + 0.653958i \(0.773107\pi\)
\(252\) 0 0
\(253\) 4.71922 8.17394i 0.296695 0.513891i
\(254\) 0 0
\(255\) 45.6155 2.85656
\(256\) 0 0
\(257\) 5.62311 + 9.73950i 0.350760 + 0.607534i 0.986383 0.164466i \(-0.0525901\pi\)
−0.635623 + 0.772000i \(0.719257\pi\)
\(258\) 0 0
\(259\) 2.56155 0.159167
\(260\) 0 0
\(261\) −17.8078 −1.10227
\(262\) 0 0
\(263\) −4.40388 7.62775i −0.271555 0.470347i 0.697705 0.716385i \(-0.254205\pi\)
−0.969260 + 0.246038i \(0.920871\pi\)
\(264\) 0 0
\(265\) −15.8078 −0.971063
\(266\) 0 0
\(267\) 12.4039 21.4842i 0.759105 1.31481i
\(268\) 0 0
\(269\) −7.40388 + 12.8239i −0.451423 + 0.781887i −0.998475 0.0552116i \(-0.982417\pi\)
0.547052 + 0.837099i \(0.315750\pi\)
\(270\) 0 0
\(271\) 2.71922 + 4.70983i 0.165181 + 0.286102i 0.936720 0.350081i \(-0.113846\pi\)
−0.771539 + 0.636183i \(0.780512\pi\)
\(272\) 0 0
\(273\) −21.9309 8.87348i −1.32732 0.537047i
\(274\) 0 0
\(275\) −9.84233 17.0474i −0.593515 1.02800i
\(276\) 0 0
\(277\) −5.50000 + 9.52628i −0.330463 + 0.572379i −0.982603 0.185720i \(-0.940538\pi\)
0.652140 + 0.758099i \(0.273872\pi\)
\(278\) 0 0
\(279\) 14.2462 24.6752i 0.852898 1.47726i
\(280\) 0 0
\(281\) 14.6847 0.876013 0.438007 0.898972i \(-0.355685\pi\)
0.438007 + 0.898972i \(0.355685\pi\)
\(282\) 0 0
\(283\) 10.7192 + 18.5662i 0.637192 + 1.10365i 0.986046 + 0.166472i \(0.0532374\pi\)
−0.348855 + 0.937177i \(0.613429\pi\)
\(284\) 0 0
\(285\) 23.3693 1.38428
\(286\) 0 0
\(287\) −23.6847 −1.39806
\(288\) 0 0
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) 0 0
\(291\) 7.19224 0.421616
\(292\) 0 0
\(293\) −5.74621 + 9.95273i −0.335697 + 0.581445i −0.983619 0.180263i \(-0.942305\pi\)
0.647921 + 0.761707i \(0.275639\pi\)
\(294\) 0 0
\(295\) −4.56155 + 7.90084i −0.265584 + 0.460005i
\(296\) 0 0
\(297\) −1.84233 3.19101i −0.106903 0.185161i
\(298\) 0 0
\(299\) 1.84233 + 13.1569i 0.106545 + 0.760881i
\(300\) 0 0
\(301\) −8.40388 14.5560i −0.484392 0.838991i
\(302\) 0 0
\(303\) −6.71922 + 11.6380i −0.386009 + 0.668588i
\(304\) 0 0
\(305\) −12.9039 + 22.3502i −0.738874 + 1.27977i
\(306\) 0 0
\(307\) −26.2462 −1.49795 −0.748975 0.662598i \(-0.769454\pi\)
−0.748975 + 0.662598i \(0.769454\pi\)
\(308\) 0 0
\(309\) −18.2462 31.6034i −1.03799 1.79785i
\(310\) 0 0
\(311\) −14.2462 −0.807829 −0.403914 0.914797i \(-0.632351\pi\)
−0.403914 + 0.914797i \(0.632351\pi\)
\(312\) 0 0
\(313\) −32.2462 −1.82266 −0.911332 0.411673i \(-0.864945\pi\)
−0.911332 + 0.411673i \(0.864945\pi\)
\(314\) 0 0
\(315\) −16.2462 28.1393i −0.915370 1.58547i
\(316\) 0 0
\(317\) 16.4384 0.923275 0.461638 0.887069i \(-0.347262\pi\)
0.461638 + 0.887069i \(0.347262\pi\)
\(318\) 0 0
\(319\) 6.40388 11.0918i 0.358549 0.621024i
\(320\) 0 0
\(321\) 4.71922 8.17394i 0.263401 0.456225i
\(322\) 0 0
\(323\) −6.40388 11.0918i −0.356322 0.617167i
\(324\) 0 0
\(325\) 25.6847 + 10.3923i 1.42473 + 0.576461i
\(326\) 0 0
\(327\) −10.5616 18.2931i −0.584055 1.01161i
\(328\) 0 0
\(329\) 5.12311 8.87348i 0.282446 0.489211i
\(330\) 0 0
\(331\) −10.9654 + 18.9927i −0.602715 + 1.04393i 0.389693 + 0.920945i \(0.372581\pi\)
−0.992408 + 0.122988i \(0.960752\pi\)
\(332\) 0 0
\(333\) −3.56155 −0.195172
\(334\) 0 0
\(335\) −16.8078 29.1119i −0.918306 1.59055i
\(336\) 0 0
\(337\) 16.4384 0.895459 0.447730 0.894169i \(-0.352233\pi\)
0.447730 + 0.894169i \(0.352233\pi\)
\(338\) 0 0
\(339\) 23.6847 1.28637
\(340\) 0 0
\(341\) 10.2462 + 17.7470i 0.554863 + 0.961052i
\(342\) 0 0
\(343\) 19.0540 1.02882
\(344\) 0 0
\(345\) −16.8078 + 29.1119i −0.904900 + 1.56733i
\(346\) 0 0
\(347\) 17.5270 30.3576i 0.940898 1.62968i 0.177135 0.984187i \(-0.443317\pi\)
0.763763 0.645497i \(-0.223350\pi\)
\(348\) 0 0
\(349\) −10.2808 17.8068i −0.550317 0.953178i −0.998251 0.0591110i \(-0.981173\pi\)
0.447934 0.894067i \(-0.352160\pi\)
\(350\) 0 0
\(351\) 4.80776 + 1.94528i 0.256619 + 0.103831i
\(352\) 0 0
\(353\) 4.50000 + 7.79423i 0.239511 + 0.414845i 0.960574 0.278024i \(-0.0896796\pi\)
−0.721063 + 0.692869i \(0.756346\pi\)
\(354\) 0 0
\(355\) 13.6847 23.7025i 0.726306 1.25800i
\(356\) 0 0
\(357\) −16.4039 + 28.4124i −0.868186 + 1.50374i
\(358\) 0 0
\(359\) −4.49242 −0.237101 −0.118550 0.992948i \(-0.537825\pi\)
−0.118550 + 0.992948i \(0.537825\pi\)
\(360\) 0 0
\(361\) 6.21922 + 10.7720i 0.327328 + 0.566948i
\(362\) 0 0
\(363\) −11.3693 −0.596734
\(364\) 0 0
\(365\) 4.68466 0.245206
\(366\) 0 0
\(367\) 16.0885 + 27.8662i 0.839815 + 1.45460i 0.890049 + 0.455865i \(0.150670\pi\)
−0.0502341 + 0.998737i \(0.515997\pi\)
\(368\) 0 0
\(369\) 32.9309 1.71431
\(370\) 0 0
\(371\) 5.68466 9.84612i 0.295133 0.511185i
\(372\) 0 0
\(373\) 5.62311 9.73950i 0.291153 0.504292i −0.682929 0.730484i \(-0.739294\pi\)
0.974083 + 0.226192i \(0.0726277\pi\)
\(374\) 0 0
\(375\) 12.2462 + 21.2111i 0.632392 + 1.09533i
\(376\) 0 0
\(377\) 2.50000 + 17.8536i 0.128757 + 0.919506i
\(378\) 0 0
\(379\) 12.9654 + 22.4568i 0.665990 + 1.15353i 0.979016 + 0.203783i \(0.0653239\pi\)
−0.313026 + 0.949744i \(0.601343\pi\)
\(380\) 0 0
\(381\) −16.4039 + 28.4124i −0.840396 + 1.45561i
\(382\) 0 0
\(383\) −8.08854 + 14.0098i −0.413305 + 0.715865i −0.995249 0.0973636i \(-0.968959\pi\)
0.581944 + 0.813229i \(0.302292\pi\)
\(384\) 0 0
\(385\) 23.3693 1.19101
\(386\) 0 0
\(387\) 11.6847 + 20.2384i 0.593965 + 1.02878i
\(388\) 0 0
\(389\) −17.3153 −0.877923 −0.438961 0.898506i \(-0.644653\pi\)
−0.438961 + 0.898506i \(0.644653\pi\)
\(390\) 0 0
\(391\) 18.4233 0.931706
\(392\) 0 0
\(393\) −23.3693 40.4768i −1.17883 2.04179i
\(394\) 0 0
\(395\) 14.2462 0.716805
\(396\) 0 0
\(397\) 10.8423 18.7795i 0.544161 0.942514i −0.454498 0.890748i \(-0.650181\pi\)
0.998659 0.0517667i \(-0.0164852\pi\)
\(398\) 0 0
\(399\) −8.40388 + 14.5560i −0.420720 + 0.728709i
\(400\) 0 0
\(401\) 4.74621 + 8.22068i 0.237014 + 0.410521i 0.959856 0.280492i \(-0.0904978\pi\)
−0.722842 + 0.691014i \(0.757164\pi\)
\(402\) 0 0
\(403\) −26.7386 10.8188i −1.33195 0.538921i
\(404\) 0 0
\(405\) −12.4654 21.5908i −0.619412 1.07285i
\(406\) 0 0
\(407\) 1.28078 2.21837i 0.0634857 0.109961i
\(408\) 0 0
\(409\) −0.623106 + 1.07925i −0.0308106 + 0.0533655i −0.881020 0.473080i \(-0.843142\pi\)
0.850209 + 0.526445i \(0.176476\pi\)
\(410\) 0 0
\(411\) −55.0540 −2.71561
\(412\) 0 0
\(413\) −3.28078 5.68247i −0.161436 0.279616i
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 50.4233 2.46924
\(418\) 0 0
\(419\) 6.96543 + 12.0645i 0.340284 + 0.589389i 0.984485 0.175467i \(-0.0561435\pi\)
−0.644202 + 0.764856i \(0.722810\pi\)
\(420\) 0 0
\(421\) −21.3153 −1.03885 −0.519423 0.854517i \(-0.673853\pi\)
−0.519423 + 0.854517i \(0.673853\pi\)
\(422\) 0 0
\(423\) −7.12311 + 12.3376i −0.346337 + 0.599874i
\(424\) 0 0
\(425\) 19.2116 33.2755i 0.931902 1.61410i
\(426\) 0 0
\(427\) −9.28078 16.0748i −0.449128 0.777913i
\(428\) 0 0
\(429\) −18.6501 + 14.5560i −0.900435 + 0.702768i
\(430\) 0 0
\(431\) −1.03457 1.79192i −0.0498333 0.0863137i 0.840033 0.542536i \(-0.182536\pi\)
−0.889866 + 0.456222i \(0.849202\pi\)
\(432\) 0 0
\(433\) 0.746211 1.29248i 0.0358606 0.0621124i −0.847538 0.530735i \(-0.821916\pi\)
0.883399 + 0.468622i \(0.155249\pi\)
\(434\) 0 0
\(435\) −22.8078 + 39.5042i −1.09355 + 1.89408i
\(436\) 0 0
\(437\) 9.43845 0.451502
\(438\) 0 0
\(439\) 18.9654 + 32.8491i 0.905171 + 1.56780i 0.820688 + 0.571377i \(0.193591\pi\)
0.0844831 + 0.996425i \(0.473076\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) 21.7538 1.03355 0.516777 0.856120i \(-0.327132\pi\)
0.516777 + 0.856120i \(0.327132\pi\)
\(444\) 0 0
\(445\) −17.2462 29.8713i −0.817549 1.41604i
\(446\) 0 0
\(447\) 33.9309 1.60488
\(448\) 0 0
\(449\) −6.52699 + 11.3051i −0.308028 + 0.533519i −0.977931 0.208929i \(-0.933002\pi\)
0.669903 + 0.742448i \(0.266336\pi\)
\(450\) 0 0
\(451\) −11.8423 + 20.5115i −0.557634 + 0.965850i
\(452\) 0 0
\(453\) 16.0000 + 27.7128i 0.751746 + 1.30206i
\(454\) 0 0
\(455\) −25.9309 + 20.2384i −1.21566 + 0.948792i
\(456\) 0 0
\(457\) 4.50000 + 7.79423i 0.210501 + 0.364599i 0.951871 0.306497i \(-0.0991571\pi\)
−0.741370 + 0.671096i \(0.765824\pi\)
\(458\) 0 0
\(459\) 3.59612 6.22866i 0.167852 0.290729i
\(460\) 0 0
\(461\) 4.74621 8.22068i 0.221053 0.382875i −0.734075 0.679068i \(-0.762384\pi\)
0.955128 + 0.296193i \(0.0957173\pi\)
\(462\) 0 0
\(463\) 32.9848 1.53294 0.766468 0.642283i \(-0.222012\pi\)
0.766468 + 0.642283i \(0.222012\pi\)
\(464\) 0 0
\(465\) −36.4924 63.2067i −1.69230 2.93114i
\(466\) 0 0
\(467\) 9.75379 0.451352 0.225676 0.974202i \(-0.427541\pi\)
0.225676 + 0.974202i \(0.427541\pi\)
\(468\) 0 0
\(469\) 24.1771 1.11639
\(470\) 0 0
\(471\) 22.8078 + 39.5042i 1.05093 + 1.82026i
\(472\) 0 0
\(473\) −16.8078 −0.772822
\(474\) 0 0
\(475\) 9.84233 17.0474i 0.451597 0.782189i
\(476\) 0 0
\(477\) −7.90388 + 13.6899i −0.361894 + 0.626819i
\(478\) 0 0
\(479\) −16.6501 28.8388i −0.760762 1.31768i −0.942458 0.334324i \(-0.891492\pi\)
0.181696 0.983355i \(-0.441841\pi\)
\(480\) 0 0
\(481\) 0.500000 + 3.57071i 0.0227980 + 0.162811i
\(482\) 0 0
\(483\) −12.0885 20.9380i −0.550048 0.952710i
\(484\) 0 0
\(485\) 5.00000 8.66025i 0.227038 0.393242i
\(486\) 0 0
\(487\) 19.2808 33.3953i 0.873695 1.51328i 0.0155493 0.999879i \(-0.495050\pi\)
0.858146 0.513406i \(-0.171616\pi\)
\(488\) 0 0
\(489\) 15.1922 0.687017
\(490\) 0 0
\(491\) −17.5270 30.3576i −0.790982 1.37002i −0.925360 0.379091i \(-0.876237\pi\)
0.134378 0.990930i \(-0.457096\pi\)
\(492\) 0 0
\(493\) 25.0000 1.12594
\(494\) 0 0
\(495\) −32.4924 −1.46043
\(496\) 0 0
\(497\) 9.84233 + 17.0474i 0.441489 + 0.764681i
\(498\) 0 0
\(499\) 16.4924 0.738302 0.369151 0.929369i \(-0.379648\pi\)
0.369151 + 0.929369i \(0.379648\pi\)
\(500\) 0 0
\(501\) 6.96543 12.0645i 0.311193 0.539002i
\(502\) 0 0
\(503\) 10.1577 17.5936i 0.452908 0.784460i −0.545657 0.838009i \(-0.683720\pi\)
0.998565 + 0.0535486i \(0.0170532\pi\)
\(504\) 0 0
\(505\) 9.34233 + 16.1814i 0.415728 + 0.720062i
\(506\) 0 0
\(507\) 8.08854 32.3029i 0.359225 1.43462i
\(508\) 0 0
\(509\) 16.5000 + 28.5788i 0.731350 + 1.26673i 0.956306 + 0.292366i \(0.0944425\pi\)
−0.224957 + 0.974369i \(0.572224\pi\)
\(510\) 0 0
\(511\) −1.68466 + 2.91791i −0.0745249 + 0.129081i
\(512\) 0 0
\(513\) 1.84233 3.19101i 0.0813408 0.140886i
\(514\) 0 0
\(515\) −50.7386 −2.23581
\(516\) 0 0
\(517\) −5.12311 8.87348i −0.225314 0.390255i
\(518\) 0 0
\(519\) −40.8078 −1.79126
\(520\) 0 0
\(521\) −28.0540 −1.22907 −0.614533 0.788891i \(-0.710656\pi\)
−0.614533 + 0.788891i \(0.710656\pi\)
\(522\) 0 0
\(523\) −20.6501 35.7670i −0.902966 1.56398i −0.823625 0.567135i \(-0.808052\pi\)
−0.0793404 0.996848i \(-0.525281\pi\)
\(524\) 0 0
\(525\) −50.4233 −2.20065
\(526\) 0 0
\(527\) −20.0000 + 34.6410i −0.871214 + 1.50899i
\(528\) 0 0
\(529\) 4.71165 8.16081i 0.204854 0.354818i
\(530\) 0 0
\(531\) 4.56155 + 7.90084i 0.197955 + 0.342867i
\(532\) 0 0
\(533\) −4.62311 33.0156i −0.200249 1.43006i
\(534\) 0 0
\(535\) −6.56155 11.3649i −0.283681 0.491349i
\(536\) 0 0
\(537\) −5.52699 + 9.57302i −0.238507 + 0.413106i
\(538\) 0 0
\(539\) 0.561553 0.972638i 0.0241878 0.0418945i
\(540\) 0 0
\(541\) 6.68466 0.287396 0.143698 0.989622i \(-0.454101\pi\)
0.143698 + 0.989622i \(0.454101\pi\)
\(542\) 0 0
\(543\) 12.5616 + 21.7572i 0.539068 + 0.933693i
\(544\) 0 0
\(545\) −29.3693 −1.25804
\(546\) 0 0
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 0 0
\(549\) 12.9039 + 22.3502i 0.550724 + 0.953882i
\(550\) 0 0
\(551\) 12.8078 0.545629
\(552\) 0 0
\(553\) −5.12311 + 8.87348i −0.217857 + 0.377339i
\(554\) 0 0
\(555\) −4.56155 + 7.90084i −0.193627 + 0.335372i
\(556\) 0 0
\(557\) 0.746211 + 1.29248i 0.0316180 + 0.0547640i 0.881401 0.472368i \(-0.156601\pi\)
−0.849783 + 0.527132i \(0.823267\pi\)
\(558\) 0 0
\(559\) 18.6501 14.5560i 0.788815 0.615651i
\(560\) 0 0
\(561\) 16.4039 + 28.4124i 0.692572 + 1.19957i
\(562\) 0 0
\(563\) 15.5270 26.8935i 0.654385 1.13343i −0.327663 0.944795i \(-0.606261\pi\)
0.982048 0.188633i \(-0.0604055\pi\)
\(564\) 0 0
\(565\) 16.4654 28.5190i 0.692706 1.19980i
\(566\) 0 0
\(567\) 17.9309 0.753026
\(568\) 0 0
\(569\) −3.15767 5.46925i −0.132376 0.229283i 0.792216 0.610241i \(-0.208927\pi\)
−0.924592 + 0.380958i \(0.875594\pi\)
\(570\) 0 0
\(571\) 24.4924 1.02498 0.512488 0.858694i \(-0.328724\pi\)
0.512488 + 0.858694i \(0.328724\pi\)
\(572\) 0 0
\(573\) −11.0540 −0.461786
\(574\) 0 0
\(575\) 14.1577 + 24.5218i 0.590416 + 1.02263i
\(576\) 0 0
\(577\) −31.5616 −1.31392 −0.656962 0.753923i \(-0.728159\pi\)
−0.656962 + 0.753923i \(0.728159\pi\)
\(578\) 0 0
\(579\) −3.84233 + 6.65511i −0.159682 + 0.276577i
\(580\) 0 0
\(581\) 2.87689 4.98293i 0.119354 0.206727i
\(582\) 0 0
\(583\) −5.68466 9.84612i −0.235434 0.407785i
\(584\) 0 0
\(585\) 36.0540 28.1393i 1.49065 1.16342i
\(586\) 0 0
\(587\) 6.96543 + 12.0645i 0.287494 + 0.497955i 0.973211 0.229914i \(-0.0738444\pi\)
−0.685717 + 0.727869i \(0.740511\pi\)
\(588\) 0 0
\(589\) −10.2462 + 17.7470i −0.422188 + 0.731251i
\(590\) 0 0
\(591\) −2.96543 + 5.13628i −0.121982 + 0.211278i
\(592\) 0 0
\(593\) −23.5616 −0.967557 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(594\) 0 0
\(595\) 22.8078 + 39.5042i 0.935027 + 1.61951i
\(596\) 0 0
\(597\) 24.1771 0.989502
\(598\) 0 0
\(599\) −22.7386 −0.929075 −0.464538 0.885553i \(-0.653779\pi\)
−0.464538 + 0.885553i \(0.653779\pi\)
\(600\) 0 0
\(601\) 18.9924 + 32.8958i 0.774717 + 1.34185i 0.934953 + 0.354771i \(0.115441\pi\)
−0.160236 + 0.987079i \(0.551226\pi\)
\(602\) 0 0
\(603\) −33.6155 −1.36893
\(604\) 0 0
\(605\) −7.90388 + 13.6899i −0.321339 + 0.556575i
\(606\) 0 0
\(607\) −15.8423 + 27.4397i −0.643020 + 1.11374i 0.341735 + 0.939796i \(0.388986\pi\)
−0.984755 + 0.173947i \(0.944348\pi\)
\(608\) 0 0
\(609\) −16.4039 28.4124i −0.664719 1.15133i
\(610\) 0 0
\(611\) 13.3693 + 5.40938i 0.540865 + 0.218840i
\(612\) 0 0
\(613\) 4.50000 + 7.79423i 0.181753 + 0.314806i 0.942478 0.334269i \(-0.108489\pi\)
−0.760724 + 0.649075i \(0.775156\pi\)
\(614\) 0 0
\(615\) 42.1771 73.0528i 1.70074 2.94578i
\(616\) 0 0
\(617\) −4.37689 + 7.58100i −0.176207 + 0.305200i −0.940578 0.339577i \(-0.889716\pi\)
0.764371 + 0.644776i \(0.223050\pi\)
\(618\) 0 0
\(619\) 36.9848 1.48655 0.743273 0.668988i \(-0.233272\pi\)
0.743273 + 0.668988i \(0.233272\pi\)
\(620\) 0 0
\(621\) 2.65009 + 4.59010i 0.106345 + 0.184194i
\(622\) 0 0
\(623\) 24.8078 0.993902
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) 8.40388 + 14.5560i 0.335619 + 0.581309i
\(628\) 0 0
\(629\) 5.00000 0.199363
\(630\) 0 0
\(631\) 13.5270 23.4294i 0.538501 0.932711i −0.460484 0.887668i \(-0.652324\pi\)
0.998985 0.0450430i \(-0.0143425\pi\)
\(632\) 0 0
\(633\) −15.7732 + 27.3200i −0.626928 + 1.08587i
\(634\) 0 0
\(635\) 22.8078 + 39.5042i 0.905099 + 1.56768i
\(636\) 0 0
\(637\) 0.219224 + 1.56557i 0.00868596 + 0.0620301i
\(638\) 0 0
\(639\) −13.6847 23.7025i −0.541357 0.937657i
\(640\) 0 0
\(641\) −15.7462 + 27.2732i −0.621938 + 1.07723i 0.367187 + 0.930147i \(0.380321\pi\)
−0.989124 + 0.147081i \(0.953012\pi\)
\(642\) 0 0
\(643\) 16.6501 28.8388i 0.656616 1.13729i −0.324871 0.945758i \(-0.605321\pi\)
0.981486 0.191533i \(-0.0613459\pi\)
\(644\) 0 0
\(645\) 59.8617 2.35705
\(646\) 0 0
\(647\) 2.96543 + 5.13628i 0.116583 + 0.201928i 0.918412 0.395626i \(-0.129472\pi\)
−0.801828 + 0.597555i \(0.796139\pi\)
\(648\) 0 0
\(649\) −6.56155 −0.257563
\(650\) 0 0
\(651\) 52.4924 2.05734
\(652\) 0 0
\(653\) −22.7732 39.4443i −0.891184 1.54358i −0.838457 0.544967i \(-0.816542\pi\)
−0.0527268 0.998609i \(-0.516791\pi\)
\(654\) 0 0
\(655\) −64.9848 −2.53917
\(656\) 0 0
\(657\) 2.34233 4.05703i 0.0913830 0.158280i
\(658\) 0 0
\(659\) −8.71922 + 15.1021i −0.339653 + 0.588296i −0.984367 0.176128i \(-0.943643\pi\)
0.644715 + 0.764423i \(0.276976\pi\)
\(660\) 0 0
\(661\) 21.8693 + 37.8788i 0.850618 + 1.47331i 0.880652 + 0.473764i \(0.157105\pi\)
−0.0300338 + 0.999549i \(0.509561\pi\)
\(662\) 0 0
\(663\) −42.8078 17.3205i −1.66252 0.672673i
\(664\) 0 0
\(665\) 11.6847 + 20.2384i 0.453112 + 0.784812i
\(666\) 0 0
\(667\) −9.21165 + 15.9550i −0.356676 + 0.617782i
\(668\) 0 0
\(669\) 4.71922 8.17394i 0.182456 0.316023i
\(670\) 0 0
\(671\) −18.5616 −0.716561
\(672\) 0 0
\(673\) −0.376894 0.652800i −0.0145282 0.0251636i 0.858670 0.512529i \(-0.171291\pi\)
−0.873198 + 0.487365i \(0.837958\pi\)
\(674\) 0 0
\(675\) 11.0540 0.425468
\(676\) 0 0
\(677\) 20.7386 0.797050 0.398525 0.917157i \(-0.369522\pi\)
0.398525 + 0.917157i \(0.369522\pi\)
\(678\) 0 0
\(679\) 3.59612 + 6.22866i 0.138006 + 0.239034i
\(680\) 0 0
\(681\) −18.0691 −0.692411
\(682\) 0 0
\(683\) −9.84233 + 17.0474i −0.376606 + 0.652301i −0.990566 0.137036i \(-0.956242\pi\)
0.613960 + 0.789337i \(0.289576\pi\)
\(684\) 0 0
\(685\) −38.2732 + 66.2911i −1.46234 + 2.53285i
\(686\) 0 0
\(687\) 5.43845 + 9.41967i 0.207490 + 0.359383i
\(688\) 0 0
\(689\) 14.8348 + 6.00231i 0.565159 + 0.228670i
\(690\) 0 0
\(691\) 10.7192 + 18.5662i 0.407778 + 0.706293i 0.994640 0.103394i \(-0.0329702\pi\)
−0.586862 + 0.809687i \(0.699637\pi\)
\(692\) 0 0
\(693\) 11.6847 20.2384i 0.443863 0.768794i
\(694\) 0 0
\(695\) 35.0540 60.7153i 1.32967 2.30306i
\(696\) 0 0
\(697\) −46.2311 −1.75113
\(698\) 0 0
\(699\) −5.43845 9.41967i −0.205701 0.356285i
\(700\) 0 0
\(701\) −16.7386 −0.632209 −0.316105 0.948724i \(-0.602375\pi\)
−0.316105 + 0.948724i \(0.602375\pi\)
\(702\) 0 0
\(703\) 2.56155 0.0966108
\(704\) 0 0
\(705\) 18.2462 + 31.6034i 0.687192 + 1.19025i
\(706\) 0 0
\(707\) −13.4384 −0.505405
\(708\) 0 0
\(709\) 7.86932 13.6301i 0.295538 0.511888i −0.679572 0.733609i \(-0.737834\pi\)
0.975110 + 0.221722i \(0.0711676\pi\)
\(710\) 0 0
\(711\) 7.12311 12.3376i 0.267137 0.462695i
\(712\) 0 0
\(713\) −14.7386 25.5281i −0.551966 0.956033i
\(714\) 0 0
\(715\) 4.56155 + 32.5760i 0.170592 + 1.21827i
\(716\) 0 0
\(717\) −2.24621 3.89055i −0.0838863 0.145295i
\(718\) 0 0
\(719\) 7.03457 12.1842i 0.262345 0.454395i −0.704520 0.709685i \(-0.748837\pi\)
0.966865 + 0.255290i \(0.0821708\pi\)
\(720\) 0 0
\(721\) 18.2462 31.6034i 0.679524 1.17697i
\(722\) 0 0
\(723\) −65.3002 −2.42854
\(724\) 0 0
\(725\) 19.2116 + 33.2755i 0.713503 + 1.23582i
\(726\) 0 0
\(727\) −42.7386 −1.58509 −0.792544 0.609815i \(-0.791244\pi\)
−0.792544 + 0.609815i \(0.791244\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −16.4039 28.4124i −0.606719 1.05087i
\(732\) 0 0
\(733\) −21.8078 −0.805488 −0.402744 0.915313i \(-0.631944\pi\)
−0.402744 + 0.915313i \(0.631944\pi\)
\(734\) 0 0
\(735\) −2.00000 + 3.46410i −0.0737711 + 0.127775i
\(736\) 0 0
\(737\) 12.0885 20.9380i 0.445287 0.771260i
\(738\) 0 0
\(739\) −9.03457 15.6483i −0.332342 0.575633i 0.650629 0.759396i \(-0.274505\pi\)
−0.982971 + 0.183763i \(0.941172\pi\)
\(740\) 0 0
\(741\) −21.9309 8.87348i −0.805651 0.325975i
\(742\) 0 0
\(743\) 18.9654 + 32.8491i 0.695774 + 1.20512i 0.969919 + 0.243428i \(0.0782720\pi\)
−0.274145 + 0.961688i \(0.588395\pi\)
\(744\) 0 0
\(745\) 23.5885 40.8566i 0.864217 1.49687i
\(746\) 0 0
\(747\) −4.00000 + 6.92820i −0.146352 + 0.253490i
\(748\) 0 0
\(749\) 9.43845 0.344873
\(750\) 0 0
\(751\) −2.65009 4.59010i −0.0967033 0.167495i 0.813615 0.581404i \(-0.197496\pi\)
−0.910318 + 0.413909i \(0.864163\pi\)
\(752\) 0 0
\(753\) 76.6695 2.79399
\(754\) 0 0
\(755\) 44.4924 1.61925
\(756\) 0 0
\(757\) −26.7732 46.3725i −0.973088 1.68544i −0.686104 0.727503i \(-0.740681\pi\)
−0.286984 0.957935i \(-0.592653\pi\)
\(758\) 0 0
\(759\) −24.1771 −0.877572
\(760\) 0 0
\(761\) 25.9654 44.9735i 0.941246 1.63029i 0.178148 0.984004i \(-0.442989\pi\)
0.763098 0.646283i \(-0.223677\pi\)
\(762\) 0 0
\(763\) 10.5616 18.2931i 0.382354 0.662256i
\(764\) 0 0
\(765\) −31.7116 54.9262i −1.14654 1.98586i
\(766\) 0 0
\(767\) 7.28078 5.68247i 0.262894 0.205182i
\(768\) 0 0
\(769\) 13.9654 + 24.1888i 0.503606 + 0.872272i 0.999991 + 0.00416940i \(0.00132717\pi\)
−0.496385 + 0.868103i \(0.665340\pi\)
\(770\) 0 0
\(771\) 14.4039 24.9483i 0.518743 0.898489i
\(772\) 0 0
\(773\) −27.4039 + 47.4649i −0.985649 + 1.70719i −0.346633 + 0.938001i \(0.612675\pi\)
−0.639016 + 0.769194i \(0.720658\pi\)
\(774\) 0 0
\(775\) −61.4773 −2.20833
\(776\) 0 0
\(777\) −3.28078 5.68247i −0.117697 0.203858i
\(778\) 0 0
\(779\) −23.6847 −0.848591
\(780\) 0 0
\(781\) 19.6847 0.704372
\(782\) 0 0
\(783\) 3.59612 + 6.22866i 0.128515 + 0.222594i
\(784\) 0 0
\(785\) 63.4233 2.26367
\(786\) 0 0
\(787\) −17.2116 + 29.8114i −0.613529 + 1.06266i 0.377112 + 0.926168i \(0.376917\pi\)
−0.990641 + 0.136496i \(0.956416\pi\)
\(788\) 0 0
\(789\) −11.2808 + 19.5389i −0.401606 + 0.695602i
\(790\) 0 0
\(791\) 11.8423 + 20.5115i 0.421065 + 0.729306i
\(792\) 0 0
\(793\) 20.5961 16.0748i 0.731390 0.570832i
\(794\) 0 0
\(795\) 20.2462 + 35.0675i 0.718059 + 1.24371i
\(796\) 0 0
\(797\) 7.96543 13.7965i 0.282150 0.488698i −0.689764 0.724034i \(-0.742286\pi\)
0.971914 + 0.235336i \(0.0756190\pi\)
\(798\) 0 0
\(799\) 10.0000 17.3205i 0.353775 0.612756i
\(800\) 0 0
\(801\) −34.4924 −1.21873
\(802\) 0 0
\(803\) 1.68466 + 2.91791i 0.0594503 + 0.102971i
\(804\) 0 0
\(805\) −33.6155 −1.18479
\(806\) 0 0
\(807\) 37.9309 1.33523
\(808\) 0 0
\(809\) 3.37689 + 5.84895i 0.118725 + 0.205638i 0.919263 0.393644i \(-0.128786\pi\)
−0.800537 + 0.599283i \(0.795453\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) 6.96543 12.0645i 0.244288 0.423120i
\(814\) 0 0
\(815\) 10.5616 18.2931i 0.369955 0.640781i
\(816\) 0 0
\(817\) −8.40388 14.5560i −0.294015 0.509248i
\(818\) 0 0
\(819\) 4.56155 + 32.5760i 0.159394 + 1.13830i
\(820\) 0 0
\(821\) −3.40388 5.89570i −0.118796 0.205761i 0.800495 0.599340i \(-0.204570\pi\)
−0.919291 + 0.393579i \(0.871237\pi\)
\(822\) 0 0
\(823\) −22.0885 + 38.2585i −0.769958 + 1.33361i 0.167627 + 0.985851i \(0.446390\pi\)
−0.937585 + 0.347756i \(0.886944\pi\)
\(824\) 0 0
\(825\) −25.2116 + 43.6679i −0.877757 + 1.52032i
\(826\) 0 0
\(827\) 28.9848 1.00790 0.503951 0.863732i \(-0.331879\pi\)
0.503951 + 0.863732i \(0.331879\pi\)
\(828\) 0 0
\(829\) −19.7462 34.2014i −0.685814 1.18787i −0.973180 0.230044i \(-0.926113\pi\)
0.287366 0.957821i \(-0.407220\pi\)
\(830\) 0 0
\(831\) 28.1771 0.977452
\(832\) 0 0
\(833\) 2.19224 0.0759565
\(834\) 0 0
\(835\) −9.68466 16.7743i −0.335151 0.580499i
\(836\) 0 0
\(837\) −11.5076 −0.397760
\(838\) 0 0
\(839\) −19.8423 + 34.3679i −0.685033 + 1.18651i 0.288393 + 0.957512i \(0.406879\pi\)
−0.973426 + 0.229000i \(0.926454\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 0 0
\(843\) −18.8078 32.5760i −0.647774 1.12198i
\(844\) 0 0
\(845\) −33.2732 32.1963i −1.14463 1.10759i
\(846\) 0 0
\(847\) −5.68466 9.84612i −0.195327 0.338317i
\(848\) 0 0
\(849\) 27.4579 47.5584i 0.942351 1.63220i
\(850\) 0 0
\(851\) −1.84233 + 3.19101i −0.0631542 + 0.109386i
\(852\) 0 0
\(853\) 13.4233 0.459605 0.229802 0.973237i \(-0.426192\pi\)
0.229802 + 0.973237i \(0.426192\pi\)
\(854\) 0 0
\(855\) −16.2462 28.1393i −0.555609 0.962343i
\(856\) 0 0
\(857\) −52.0540 −1.77813 −0.889065 0.457781i \(-0.848644\pi\)
−0.889065 + 0.457781i \(0.848644\pi\)
\(858\) 0 0
\(859\) −5.75379 −0.196317 −0.0981584 0.995171i \(-0.531295\pi\)
−0.0981584 + 0.995171i \(0.531295\pi\)
\(860\) 0 0
\(861\) 30.3348 + 52.5413i 1.03381 + 1.79060i
\(862\) 0 0
\(863\) −38.2462 −1.30192 −0.650958 0.759114i \(-0.725633\pi\)
−0.650958 + 0.759114i \(0.725633\pi\)
\(864\) 0 0
\(865\) −28.3693 + 49.1371i −0.964586 + 1.67071i
\(866\) 0 0
\(867\) −10.2462 + 17.7470i −0.347980 + 0.602718i
\(868\) 0 0
\(869\) 5.12311 + 8.87348i 0.173789 + 0.301012i
\(870\) 0 0
\(871\) 4.71922 + 33.7020i 0.159905 + 1.14195i
\(872\) 0 0
\(873\) −5.00000 8.66025i −0.169224 0.293105i
\(874\) 0 0
\(875\) −12.2462 + 21.2111i −0.413998 + 0.717065i
\(876\) 0 0
\(877\) −4.86932 + 8.43390i −0.164425 + 0.284793i −0.936451 0.350798i \(-0.885910\pi\)
0.772026 + 0.635591i \(0.219244\pi\)
\(878\) 0 0
\(879\) 29.4384 0.992934
\(880\) 0 0
\(881\) −0.623106 1.07925i −0.0209930 0.0363609i 0.855338 0.518070i \(-0.173349\pi\)
−0.876331 + 0.481709i \(0.840016\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 23.3693 0.785551
\(886\) 0 0
\(887\) −4.15767 7.20130i −0.139601 0.241796i 0.787745 0.616002i \(-0.211249\pi\)
−0.927346 + 0.374206i \(0.877915\pi\)
\(888\) 0 0
\(889\) −32.8078 −1.10034
\(890\) 0 0
\(891\) 8.96543 15.5286i 0.300353 0.520227i
\(892\) 0 0
\(893\) 5.12311 8.87348i 0.171438 0.296940i
\(894\) 0 0
\(895\) 7.68466 + 13.3102i 0.256870 + 0.444912i
\(896\) 0 0
\(897\) 26.8272 20.9380i 0.895733 0.699098i
\(898\) 0 0
\(899\) −20.0000 34.6410i −0.667037 1.15534i
\(900\) 0 0
\(901\) 11.0961 19.2190i 0.369665 0.640279i
\(902\) 0 0
\(903\) −21.5270 + 37.2858i −0.716373 + 1.24079i
\(904\) 0 0
\(905\) 34.9309 1.16114
\(906\) 0 0
\(907\) −6.65009 11.5183i −0.220813 0.382459i 0.734242 0.678888i \(-0.237538\pi\)
−0.955055 + 0.296429i \(0.904204\pi\)
\(908\) 0 0
\(909\) 18.6847 0.619731
\(910\) 0 0
\(911\) 18.7386 0.620839 0.310419 0.950600i \(-0.399531\pi\)
0.310419 + 0.950600i \(0.399531\pi\)
\(912\) 0 0
\(913\) −2.87689 4.98293i −0.0952113 0.164911i
\(914\) 0 0
\(915\) 66.1080 2.18546
\(916\) 0 0
\(917\) 23.3693 40.4768i 0.771723 1.33666i
\(918\) 0 0
\(919\) 5.77320 9.99947i 0.190440 0.329852i −0.754956 0.655775i \(-0.772342\pi\)
0.945396 + 0.325923i \(0.105675\pi\)
\(920\) 0 0
\(921\) 33.6155 + 58.2238i 1.10767 + 1.91854i
\(922\) 0 0
\(923\) −21.8423 + 17.0474i −0.718949 + 0.561122i
\(924\) 0 0
\(925\) 3.84233 + 6.65511i 0.126335 + 0.218819i
\(926\) 0 0
\(927\) −25.3693 + 43.9409i −0.833238 + 1.44321i
\(928\) 0 0
\(929\) −13.9924 + 24.2356i −0.459076 + 0.795144i −0.998912 0.0466265i \(-0.985153\pi\)
0.539836 + 0.841770i \(0.318486\pi\)
\(930\) 0 0
\(931\) 1.12311 0.0368083
\(932\) 0 0
\(933\) 18.2462 + 31.6034i 0.597354 + 1.03465i
\(934\) 0 0
\(935\) 45.6155 1.49179
\(936\) 0 0
\(937\) −1.31534 −0.0429703 −0.0214852 0.999769i \(-0.506839\pi\)
−0.0214852 + 0.999769i \(0.506839\pi\)
\(938\) 0 0
\(939\) 41.3002 + 71.5340i 1.34778 + 2.33442i
\(940\) 0 0
\(941\) 14.0000 0.456387 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(942\) 0 0
\(943\) 17.0346 29.5047i 0.554722 0.960806i
\(944\) 0 0
\(945\) −6.56155 + 11.3649i −0.213447 + 0.369702i
\(946\) 0 0
\(947\) 23.2116 + 40.2038i 0.754277 + 1.30645i 0.945733 + 0.324945i \(0.105346\pi\)
−0.191456 + 0.981501i \(0.561321\pi\)
\(948\) 0 0
\(949\) −4.39630 1.77879i −0.142710 0.0577421i
\(950\) 0 0
\(951\) −21.0540 36.4666i −0.682722 1.18251i
\(952\) 0 0
\(953\) 2.59612 4.49661i 0.0840965 0.145659i −0.820909 0.571059i \(-0.806533\pi\)
0.905006 + 0.425399i \(0.139866\pi\)
\(954\) 0 0
\(955\) −7.68466 + 13.3102i −0.248670 + 0.430709i
\(956\) 0 0
\(957\) −32.8078 −1.06052
\(958\) 0 0
\(959\) −27.5270 47.6781i −0.888893 1.53961i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −13.1231 −0.422886
\(964\) 0 0
\(965\) 5.34233 + 9.25319i 0.171976 + 0.297871i
\(966\) 0 0
\(967\) 22.2462 0.715390 0.357695 0.933838i \(-0.383563\pi\)
0.357695 + 0.933838i \(0.383563\pi\)
\(968\) 0 0
\(969\) −16.4039 + 28.4124i −0.526969 + 0.912736i
\(970\) 0 0
\(971\) −15.8423 + 27.4397i −0.508405 + 0.880582i 0.491548 + 0.870850i \(0.336431\pi\)
−0.999953 + 0.00973207i \(0.996902\pi\)
\(972\) 0 0
\(973\) 25.2116 + 43.6679i 0.808248 + 1.39993i
\(974\) 0 0
\(975\) −9.84233 70.2883i −0.315207 2.25103i
\(976\) 0 0
\(977\) 7.62311 + 13.2036i 0.243885 + 0.422421i 0.961817 0.273692i \(-0.0882448\pi\)
−0.717933 + 0.696113i \(0.754911\pi\)
\(978\) 0 0
\(979\) 12.4039 21.4842i 0.396430 0.686637i
\(980\) 0 0
\(981\) −14.6847 + 25.4346i −0.468845 + 0.812063i
\(982\) 0 0
\(983\) 40.9848 1.30721 0.653607 0.756834i \(-0.273255\pi\)
0.653607 + 0.756834i \(0.273255\pi\)
\(984\) 0 0
\(985\) 4.12311 + 7.14143i 0.131373 + 0.227545i
\(986\) 0 0
\(987\) −26.2462 −0.835426
\(988\) 0 0
\(989\) 24.1771 0.768786
\(990\) 0 0
\(991\) −28.6501 49.6234i −0.910100 1.57634i −0.813921 0.580976i \(-0.802671\pi\)
−0.0961794 0.995364i \(-0.530662\pi\)
\(992\) 0 0
\(993\) 56.1771 1.78273
\(994\) 0 0
\(995\) 16.8078 29.1119i 0.532842 0.922909i
\(996\) 0 0
\(997\) 13.3769 23.1695i 0.423650 0.733784i −0.572643 0.819805i \(-0.694082\pi\)
0.996293 + 0.0860208i \(0.0274151\pi\)
\(998\) 0 0
\(999\) 0.719224 + 1.24573i 0.0227552 + 0.0394132i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.2.i.b.81.1 yes 4
3.2 odd 2 936.2.t.f.289.2 4
4.3 odd 2 208.2.i.e.81.2 4
8.3 odd 2 832.2.i.l.705.1 4
8.5 even 2 832.2.i.o.705.2 4
12.11 even 2 1872.2.t.s.289.2 4
13.2 odd 12 1352.2.f.d.337.4 4
13.3 even 3 1352.2.a.f.1.2 2
13.4 even 6 1352.2.i.e.529.1 4
13.5 odd 4 1352.2.o.c.361.2 8
13.6 odd 12 1352.2.o.c.1161.2 8
13.7 odd 12 1352.2.o.c.1161.1 8
13.8 odd 4 1352.2.o.c.361.1 8
13.9 even 3 inner 104.2.i.b.9.1 4
13.10 even 6 1352.2.a.h.1.2 2
13.11 odd 12 1352.2.f.d.337.3 4
13.12 even 2 1352.2.i.e.1329.1 4
39.35 odd 6 936.2.t.f.217.2 4
52.3 odd 6 2704.2.a.q.1.1 2
52.11 even 12 2704.2.f.l.337.1 4
52.15 even 12 2704.2.f.l.337.2 4
52.23 odd 6 2704.2.a.r.1.1 2
52.35 odd 6 208.2.i.e.113.2 4
104.35 odd 6 832.2.i.l.321.1 4
104.61 even 6 832.2.i.o.321.2 4
156.35 even 6 1872.2.t.s.1153.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.1 4 13.9 even 3 inner
104.2.i.b.81.1 yes 4 1.1 even 1 trivial
208.2.i.e.81.2 4 4.3 odd 2
208.2.i.e.113.2 4 52.35 odd 6
832.2.i.l.321.1 4 104.35 odd 6
832.2.i.l.705.1 4 8.3 odd 2
832.2.i.o.321.2 4 104.61 even 6
832.2.i.o.705.2 4 8.5 even 2
936.2.t.f.217.2 4 39.35 odd 6
936.2.t.f.289.2 4 3.2 odd 2
1352.2.a.f.1.2 2 13.3 even 3
1352.2.a.h.1.2 2 13.10 even 6
1352.2.f.d.337.3 4 13.11 odd 12
1352.2.f.d.337.4 4 13.2 odd 12
1352.2.i.e.529.1 4 13.4 even 6
1352.2.i.e.1329.1 4 13.12 even 2
1352.2.o.c.361.1 8 13.8 odd 4
1352.2.o.c.361.2 8 13.5 odd 4
1352.2.o.c.1161.1 8 13.7 odd 12
1352.2.o.c.1161.2 8 13.6 odd 12
1872.2.t.s.289.2 4 12.11 even 2
1872.2.t.s.1153.2 4 156.35 even 6
2704.2.a.q.1.1 2 52.3 odd 6
2704.2.a.r.1.1 2 52.23 odd 6
2704.2.f.l.337.1 4 52.11 even 12
2704.2.f.l.337.2 4 52.15 even 12