Properties

Label 104.2.i.b.9.1
Level $104$
Weight $2$
Character 104.9
Analytic conductor $0.830$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(9,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(1.28078 - 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 104.9
Dual form 104.2.i.b.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 + 2.21837i) q^{3} -3.56155 q^{5} +(1.28078 + 2.21837i) q^{7} +(-1.78078 - 3.08440i) q^{9} +(-1.28078 + 2.21837i) q^{11} +(3.34233 - 1.35234i) q^{13} +(4.56155 - 7.90084i) q^{15} +(2.50000 + 4.33013i) q^{17} +(1.28078 + 2.21837i) q^{19} -6.56155 q^{21} +(1.84233 - 3.19101i) q^{23} +7.68466 q^{25} +1.43845 q^{27} +(2.50000 - 4.33013i) q^{29} -8.00000 q^{31} +(-3.28078 - 5.68247i) q^{33} +(-4.56155 - 7.90084i) q^{35} +(0.500000 - 0.866025i) q^{37} +(-1.28078 + 9.14657i) q^{39} +(-4.62311 + 8.00745i) q^{41} +(3.28078 + 5.68247i) q^{43} +(6.34233 + 10.9852i) q^{45} +4.00000 q^{47} +(0.219224 - 0.379706i) q^{49} -12.8078 q^{51} +4.43845 q^{53} +(4.56155 - 7.90084i) q^{55} -6.56155 q^{57} +(1.28078 + 2.21837i) q^{59} +(3.62311 + 6.27540i) q^{61} +(4.56155 - 7.90084i) q^{63} +(-11.9039 + 4.81645i) q^{65} +(4.71922 - 8.17394i) q^{67} +(4.71922 + 8.17394i) q^{69} +(-3.84233 - 6.65511i) q^{71} -1.31534 q^{73} +(-9.84233 + 17.0474i) q^{75} -6.56155 q^{77} -4.00000 q^{79} +(3.50000 - 6.06218i) q^{81} +2.24621 q^{83} +(-8.90388 - 15.4220i) q^{85} +(6.40388 + 11.0918i) q^{87} +(4.84233 - 8.38716i) q^{89} +(7.28078 + 5.68247i) q^{91} +(10.2462 - 17.7470i) q^{93} +(-4.56155 - 7.90084i) q^{95} +(-1.40388 - 2.43160i) q^{97} +9.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 6 q^{5} + q^{7} - 3 q^{9} - q^{11} + q^{13} + 10 q^{15} + 10 q^{17} + q^{19} - 18 q^{21} - 5 q^{23} + 6 q^{25} + 14 q^{27} + 10 q^{29} - 32 q^{31} - 9 q^{33} - 10 q^{35} + 2 q^{37} - q^{39}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28078 + 2.21837i −0.739457 + 1.28078i 0.213284 + 0.976990i \(0.431584\pi\)
−0.952740 + 0.303786i \(0.901749\pi\)
\(4\) 0 0
\(5\) −3.56155 −1.59277 −0.796387 0.604787i \(-0.793258\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 0 0
\(7\) 1.28078 + 2.21837i 0.484088 + 0.838465i 0.999833 0.0182772i \(-0.00581813\pi\)
−0.515745 + 0.856742i \(0.672485\pi\)
\(8\) 0 0
\(9\) −1.78078 3.08440i −0.593592 1.02813i
\(10\) 0 0
\(11\) −1.28078 + 2.21837i −0.386169 + 0.668864i −0.991931 0.126782i \(-0.959535\pi\)
0.605762 + 0.795646i \(0.292868\pi\)
\(12\) 0 0
\(13\) 3.34233 1.35234i 0.926995 0.375073i
\(14\) 0 0
\(15\) 4.56155 7.90084i 1.17779 2.03999i
\(16\) 0 0
\(17\) 2.50000 + 4.33013i 0.606339 + 1.05021i 0.991838 + 0.127502i \(0.0406959\pi\)
−0.385499 + 0.922708i \(0.625971\pi\)
\(18\) 0 0
\(19\) 1.28078 + 2.21837i 0.293830 + 0.508929i 0.974712 0.223464i \(-0.0717366\pi\)
−0.680882 + 0.732393i \(0.738403\pi\)
\(20\) 0 0
\(21\) −6.56155 −1.43185
\(22\) 0 0
\(23\) 1.84233 3.19101i 0.384152 0.665371i −0.607499 0.794320i \(-0.707827\pi\)
0.991651 + 0.128949i \(0.0411605\pi\)
\(24\) 0 0
\(25\) 7.68466 1.53693
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 2.50000 4.33013i 0.464238 0.804084i −0.534928 0.844897i \(-0.679661\pi\)
0.999167 + 0.0408130i \(0.0129948\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) −3.28078 5.68247i −0.571110 0.989191i
\(34\) 0 0
\(35\) −4.56155 7.90084i −0.771043 1.33549i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) −1.28078 + 9.14657i −0.205088 + 1.46462i
\(40\) 0 0
\(41\) −4.62311 + 8.00745i −0.722008 + 1.25055i 0.238186 + 0.971220i \(0.423447\pi\)
−0.960194 + 0.279335i \(0.909886\pi\)
\(42\) 0 0
\(43\) 3.28078 + 5.68247i 0.500314 + 0.866569i 1.00000 0.000362281i \(0.000115318\pi\)
−0.499686 + 0.866206i \(0.666551\pi\)
\(44\) 0 0
\(45\) 6.34233 + 10.9852i 0.945459 + 1.63758i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 0.219224 0.379706i 0.0313177 0.0542438i
\(50\) 0 0
\(51\) −12.8078 −1.79345
\(52\) 0 0
\(53\) 4.43845 0.609668 0.304834 0.952406i \(-0.401399\pi\)
0.304834 + 0.952406i \(0.401399\pi\)
\(54\) 0 0
\(55\) 4.56155 7.90084i 0.615080 1.06535i
\(56\) 0 0
\(57\) −6.56155 −0.869099
\(58\) 0 0
\(59\) 1.28078 + 2.21837i 0.166743 + 0.288807i 0.937273 0.348597i \(-0.113342\pi\)
−0.770530 + 0.637404i \(0.780008\pi\)
\(60\) 0 0
\(61\) 3.62311 + 6.27540i 0.463891 + 0.803483i 0.999151 0.0412046i \(-0.0131195\pi\)
−0.535260 + 0.844688i \(0.679786\pi\)
\(62\) 0 0
\(63\) 4.56155 7.90084i 0.574702 0.995412i
\(64\) 0 0
\(65\) −11.9039 + 4.81645i −1.47649 + 0.597407i
\(66\) 0 0
\(67\) 4.71922 8.17394i 0.576545 0.998605i −0.419327 0.907835i \(-0.637734\pi\)
0.995872 0.0907698i \(-0.0289328\pi\)
\(68\) 0 0
\(69\) 4.71922 + 8.17394i 0.568128 + 0.984026i
\(70\) 0 0
\(71\) −3.84233 6.65511i −0.456001 0.789816i 0.542745 0.839898i \(-0.317385\pi\)
−0.998745 + 0.0500816i \(0.984052\pi\)
\(72\) 0 0
\(73\) −1.31534 −0.153949 −0.0769745 0.997033i \(-0.524526\pi\)
−0.0769745 + 0.997033i \(0.524526\pi\)
\(74\) 0 0
\(75\) −9.84233 + 17.0474i −1.13649 + 1.96847i
\(76\) 0 0
\(77\) −6.56155 −0.747758
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 3.50000 6.06218i 0.388889 0.673575i
\(82\) 0 0
\(83\) 2.24621 0.246554 0.123277 0.992372i \(-0.460660\pi\)
0.123277 + 0.992372i \(0.460660\pi\)
\(84\) 0 0
\(85\) −8.90388 15.4220i −0.965762 1.67275i
\(86\) 0 0
\(87\) 6.40388 + 11.0918i 0.686568 + 1.18917i
\(88\) 0 0
\(89\) 4.84233 8.38716i 0.513286 0.889037i −0.486595 0.873627i \(-0.661761\pi\)
0.999881 0.0154098i \(-0.00490527\pi\)
\(90\) 0 0
\(91\) 7.28078 + 5.68247i 0.763233 + 0.595685i
\(92\) 0 0
\(93\) 10.2462 17.7470i 1.06248 1.84027i
\(94\) 0 0
\(95\) −4.56155 7.90084i −0.468005 0.810609i
\(96\) 0 0
\(97\) −1.40388 2.43160i −0.142543 0.246891i 0.785911 0.618340i \(-0.212194\pi\)
−0.928453 + 0.371449i \(0.878861\pi\)
\(98\) 0 0
\(99\) 9.12311 0.916907
\(100\) 0 0
\(101\) −2.62311 + 4.54335i −0.261009 + 0.452080i −0.966510 0.256628i \(-0.917388\pi\)
0.705501 + 0.708708i \(0.250722\pi\)
\(102\) 0 0
\(103\) 14.2462 1.40372 0.701860 0.712314i \(-0.252353\pi\)
0.701860 + 0.712314i \(0.252353\pi\)
\(104\) 0 0
\(105\) 23.3693 2.28061
\(106\) 0 0
\(107\) 1.84233 3.19101i 0.178105 0.308486i −0.763127 0.646249i \(-0.776337\pi\)
0.941231 + 0.337763i \(0.109670\pi\)
\(108\) 0 0
\(109\) 8.24621 0.789844 0.394922 0.918715i \(-0.370772\pi\)
0.394922 + 0.918715i \(0.370772\pi\)
\(110\) 0 0
\(111\) 1.28078 + 2.21837i 0.121566 + 0.210558i
\(112\) 0 0
\(113\) −4.62311 8.00745i −0.434905 0.753278i 0.562383 0.826877i \(-0.309885\pi\)
−0.997288 + 0.0735992i \(0.976551\pi\)
\(114\) 0 0
\(115\) −6.56155 + 11.3649i −0.611868 + 1.05979i
\(116\) 0 0
\(117\) −10.1231 7.90084i −0.935881 0.730433i
\(118\) 0 0
\(119\) −6.40388 + 11.0918i −0.587043 + 1.01679i
\(120\) 0 0
\(121\) 2.21922 + 3.84381i 0.201748 + 0.349437i
\(122\) 0 0
\(123\) −11.8423 20.5115i −1.06779 1.84946i
\(124\) 0 0
\(125\) −9.56155 −0.855211
\(126\) 0 0
\(127\) −6.40388 + 11.0918i −0.568253 + 0.984242i 0.428486 + 0.903548i \(0.359047\pi\)
−0.996739 + 0.0806942i \(0.974286\pi\)
\(128\) 0 0
\(129\) −16.8078 −1.47984
\(130\) 0 0
\(131\) 18.2462 1.59418 0.797089 0.603861i \(-0.206372\pi\)
0.797089 + 0.603861i \(0.206372\pi\)
\(132\) 0 0
\(133\) −3.28078 + 5.68247i −0.284479 + 0.492733i
\(134\) 0 0
\(135\) −5.12311 −0.440927
\(136\) 0 0
\(137\) 10.7462 + 18.6130i 0.918111 + 1.59021i 0.802282 + 0.596945i \(0.203619\pi\)
0.115829 + 0.993269i \(0.463048\pi\)
\(138\) 0 0
\(139\) −9.84233 17.0474i −0.834815 1.44594i −0.894181 0.447706i \(-0.852241\pi\)
0.0593651 0.998236i \(-0.481092\pi\)
\(140\) 0 0
\(141\) −5.12311 + 8.87348i −0.431443 + 0.747282i
\(142\) 0 0
\(143\) −1.28078 + 9.14657i −0.107104 + 0.764875i
\(144\) 0 0
\(145\) −8.90388 + 15.4220i −0.739427 + 1.28073i
\(146\) 0 0
\(147\) 0.561553 + 0.972638i 0.0463161 + 0.0802218i
\(148\) 0 0
\(149\) −6.62311 11.4716i −0.542586 0.939786i −0.998755 0.0498931i \(-0.984112\pi\)
0.456169 0.889893i \(-0.349221\pi\)
\(150\) 0 0
\(151\) −12.4924 −1.01662 −0.508309 0.861174i \(-0.669729\pi\)
−0.508309 + 0.861174i \(0.669729\pi\)
\(152\) 0 0
\(153\) 8.90388 15.4220i 0.719836 1.24679i
\(154\) 0 0
\(155\) 28.4924 2.28857
\(156\) 0 0
\(157\) −17.8078 −1.42121 −0.710607 0.703589i \(-0.751580\pi\)
−0.710607 + 0.703589i \(0.751580\pi\)
\(158\) 0 0
\(159\) −5.68466 + 9.84612i −0.450823 + 0.780848i
\(160\) 0 0
\(161\) 9.43845 0.743854
\(162\) 0 0
\(163\) −2.96543 5.13628i −0.232271 0.402305i 0.726205 0.687478i \(-0.241282\pi\)
−0.958476 + 0.285173i \(0.907949\pi\)
\(164\) 0 0
\(165\) 11.6847 + 20.2384i 0.909649 + 1.57556i
\(166\) 0 0
\(167\) 2.71922 4.70983i 0.210420 0.364458i −0.741426 0.671034i \(-0.765850\pi\)
0.951846 + 0.306577i \(0.0991836\pi\)
\(168\) 0 0
\(169\) 9.34233 9.03996i 0.718641 0.695382i
\(170\) 0 0
\(171\) 4.56155 7.90084i 0.348831 0.604192i
\(172\) 0 0
\(173\) 7.96543 + 13.7965i 0.605601 + 1.04893i 0.991956 + 0.126581i \(0.0404005\pi\)
−0.386355 + 0.922350i \(0.626266\pi\)
\(174\) 0 0
\(175\) 9.84233 + 17.0474i 0.744010 + 1.28866i
\(176\) 0 0
\(177\) −6.56155 −0.493197
\(178\) 0 0
\(179\) −2.15767 + 3.73720i −0.161272 + 0.279331i −0.935325 0.353789i \(-0.884893\pi\)
0.774053 + 0.633121i \(0.218226\pi\)
\(180\) 0 0
\(181\) −9.80776 −0.729005 −0.364503 0.931202i \(-0.618761\pi\)
−0.364503 + 0.931202i \(0.618761\pi\)
\(182\) 0 0
\(183\) −18.5616 −1.37211
\(184\) 0 0
\(185\) −1.78078 + 3.08440i −0.130925 + 0.226769i
\(186\) 0 0
\(187\) −12.8078 −0.936596
\(188\) 0 0
\(189\) 1.84233 + 3.19101i 0.134010 + 0.232112i
\(190\) 0 0
\(191\) 2.15767 + 3.73720i 0.156124 + 0.270414i 0.933468 0.358662i \(-0.116767\pi\)
−0.777344 + 0.629076i \(0.783434\pi\)
\(192\) 0 0
\(193\) −1.50000 + 2.59808i −0.107972 + 0.187014i −0.914949 0.403570i \(-0.867769\pi\)
0.806976 + 0.590584i \(0.201102\pi\)
\(194\) 0 0
\(195\) 4.56155 32.5760i 0.326660 2.33282i
\(196\) 0 0
\(197\) −1.15767 + 2.00514i −0.0824806 + 0.142861i −0.904315 0.426866i \(-0.859618\pi\)
0.821834 + 0.569727i \(0.192951\pi\)
\(198\) 0 0
\(199\) −4.71922 8.17394i −0.334537 0.579435i 0.648859 0.760909i \(-0.275247\pi\)
−0.983396 + 0.181474i \(0.941913\pi\)
\(200\) 0 0
\(201\) 12.0885 + 20.9380i 0.852660 + 1.47685i
\(202\) 0 0
\(203\) 12.8078 0.898929
\(204\) 0 0
\(205\) 16.4654 28.5190i 1.15000 1.99185i
\(206\) 0 0
\(207\) −13.1231 −0.912119
\(208\) 0 0
\(209\) −6.56155 −0.453872
\(210\) 0 0
\(211\) −6.15767 + 10.6654i −0.423912 + 0.734236i −0.996318 0.0857336i \(-0.972677\pi\)
0.572407 + 0.819970i \(0.306010\pi\)
\(212\) 0 0
\(213\) 19.6847 1.34877
\(214\) 0 0
\(215\) −11.6847 20.2384i −0.796887 1.38025i
\(216\) 0 0
\(217\) −10.2462 17.7470i −0.695558 1.20474i
\(218\) 0 0
\(219\) 1.68466 2.91791i 0.113839 0.197174i
\(220\) 0 0
\(221\) 14.2116 + 11.0918i 0.955979 + 0.746119i
\(222\) 0 0
\(223\) 1.84233 3.19101i 0.123371 0.213686i −0.797724 0.603023i \(-0.793963\pi\)
0.921095 + 0.389337i \(0.127296\pi\)
\(224\) 0 0
\(225\) −13.6847 23.7025i −0.912311 1.58017i
\(226\) 0 0
\(227\) 3.52699 + 6.10892i 0.234094 + 0.405463i 0.959009 0.283375i \(-0.0914542\pi\)
−0.724915 + 0.688839i \(0.758121\pi\)
\(228\) 0 0
\(229\) −4.24621 −0.280598 −0.140299 0.990109i \(-0.544806\pi\)
−0.140299 + 0.990109i \(0.544806\pi\)
\(230\) 0 0
\(231\) 8.40388 14.5560i 0.552935 0.957711i
\(232\) 0 0
\(233\) 4.24621 0.278179 0.139089 0.990280i \(-0.455583\pi\)
0.139089 + 0.990280i \(0.455583\pi\)
\(234\) 0 0
\(235\) −14.2462 −0.929320
\(236\) 0 0
\(237\) 5.12311 8.87348i 0.332781 0.576394i
\(238\) 0 0
\(239\) 1.75379 0.113443 0.0567216 0.998390i \(-0.481935\pi\)
0.0567216 + 0.998390i \(0.481935\pi\)
\(240\) 0 0
\(241\) 12.7462 + 22.0771i 0.821056 + 1.42211i 0.904897 + 0.425631i \(0.139948\pi\)
−0.0838412 + 0.996479i \(0.526719\pi\)
\(242\) 0 0
\(243\) 11.1231 + 19.2658i 0.713548 + 1.23590i
\(244\) 0 0
\(245\) −0.780776 + 1.35234i −0.0498820 + 0.0863981i
\(246\) 0 0
\(247\) 7.28078 + 5.68247i 0.463265 + 0.361567i
\(248\) 0 0
\(249\) −2.87689 + 4.98293i −0.182316 + 0.315780i
\(250\) 0 0
\(251\) −14.9654 25.9209i −0.944610 1.63611i −0.756530 0.653958i \(-0.773107\pi\)
−0.188079 0.982154i \(-0.560226\pi\)
\(252\) 0 0
\(253\) 4.71922 + 8.17394i 0.296695 + 0.513891i
\(254\) 0 0
\(255\) 45.6155 2.85656
\(256\) 0 0
\(257\) 5.62311 9.73950i 0.350760 0.607534i −0.635623 0.772000i \(-0.719257\pi\)
0.986383 + 0.164466i \(0.0525901\pi\)
\(258\) 0 0
\(259\) 2.56155 0.159167
\(260\) 0 0
\(261\) −17.8078 −1.10227
\(262\) 0 0
\(263\) −4.40388 + 7.62775i −0.271555 + 0.470347i −0.969260 0.246038i \(-0.920871\pi\)
0.697705 + 0.716385i \(0.254205\pi\)
\(264\) 0 0
\(265\) −15.8078 −0.971063
\(266\) 0 0
\(267\) 12.4039 + 21.4842i 0.759105 + 1.31481i
\(268\) 0 0
\(269\) −7.40388 12.8239i −0.451423 0.781887i 0.547052 0.837099i \(-0.315750\pi\)
−0.998475 + 0.0552116i \(0.982417\pi\)
\(270\) 0 0
\(271\) 2.71922 4.70983i 0.165181 0.286102i −0.771539 0.636183i \(-0.780512\pi\)
0.936720 + 0.350081i \(0.113846\pi\)
\(272\) 0 0
\(273\) −21.9309 + 8.87348i −1.32732 + 0.537047i
\(274\) 0 0
\(275\) −9.84233 + 17.0474i −0.593515 + 1.02800i
\(276\) 0 0
\(277\) −5.50000 9.52628i −0.330463 0.572379i 0.652140 0.758099i \(-0.273872\pi\)
−0.982603 + 0.185720i \(0.940538\pi\)
\(278\) 0 0
\(279\) 14.2462 + 24.6752i 0.852898 + 1.47726i
\(280\) 0 0
\(281\) 14.6847 0.876013 0.438007 0.898972i \(-0.355685\pi\)
0.438007 + 0.898972i \(0.355685\pi\)
\(282\) 0 0
\(283\) 10.7192 18.5662i 0.637192 1.10365i −0.348855 0.937177i \(-0.613429\pi\)
0.986046 0.166472i \(-0.0532374\pi\)
\(284\) 0 0
\(285\) 23.3693 1.38428
\(286\) 0 0
\(287\) −23.6847 −1.39806
\(288\) 0 0
\(289\) −4.00000 + 6.92820i −0.235294 + 0.407541i
\(290\) 0 0
\(291\) 7.19224 0.421616
\(292\) 0 0
\(293\) −5.74621 9.95273i −0.335697 0.581445i 0.647921 0.761707i \(-0.275639\pi\)
−0.983619 + 0.180263i \(0.942305\pi\)
\(294\) 0 0
\(295\) −4.56155 7.90084i −0.265584 0.460005i
\(296\) 0 0
\(297\) −1.84233 + 3.19101i −0.106903 + 0.185161i
\(298\) 0 0
\(299\) 1.84233 13.1569i 0.106545 0.760881i
\(300\) 0 0
\(301\) −8.40388 + 14.5560i −0.484392 + 0.838991i
\(302\) 0 0
\(303\) −6.71922 11.6380i −0.386009 0.668588i
\(304\) 0 0
\(305\) −12.9039 22.3502i −0.738874 1.27977i
\(306\) 0 0
\(307\) −26.2462 −1.49795 −0.748975 0.662598i \(-0.769454\pi\)
−0.748975 + 0.662598i \(0.769454\pi\)
\(308\) 0 0
\(309\) −18.2462 + 31.6034i −1.03799 + 1.79785i
\(310\) 0 0
\(311\) −14.2462 −0.807829 −0.403914 0.914797i \(-0.632351\pi\)
−0.403914 + 0.914797i \(0.632351\pi\)
\(312\) 0 0
\(313\) −32.2462 −1.82266 −0.911332 0.411673i \(-0.864945\pi\)
−0.911332 + 0.411673i \(0.864945\pi\)
\(314\) 0 0
\(315\) −16.2462 + 28.1393i −0.915370 + 1.58547i
\(316\) 0 0
\(317\) 16.4384 0.923275 0.461638 0.887069i \(-0.347262\pi\)
0.461638 + 0.887069i \(0.347262\pi\)
\(318\) 0 0
\(319\) 6.40388 + 11.0918i 0.358549 + 0.621024i
\(320\) 0 0
\(321\) 4.71922 + 8.17394i 0.263401 + 0.456225i
\(322\) 0 0
\(323\) −6.40388 + 11.0918i −0.356322 + 0.617167i
\(324\) 0 0
\(325\) 25.6847 10.3923i 1.42473 0.576461i
\(326\) 0 0
\(327\) −10.5616 + 18.2931i −0.584055 + 1.01161i
\(328\) 0 0
\(329\) 5.12311 + 8.87348i 0.282446 + 0.489211i
\(330\) 0 0
\(331\) −10.9654 18.9927i −0.602715 1.04393i −0.992408 0.122988i \(-0.960752\pi\)
0.389693 0.920945i \(-0.372581\pi\)
\(332\) 0 0
\(333\) −3.56155 −0.195172
\(334\) 0 0
\(335\) −16.8078 + 29.1119i −0.918306 + 1.59055i
\(336\) 0 0
\(337\) 16.4384 0.895459 0.447730 0.894169i \(-0.352233\pi\)
0.447730 + 0.894169i \(0.352233\pi\)
\(338\) 0 0
\(339\) 23.6847 1.28637
\(340\) 0 0
\(341\) 10.2462 17.7470i 0.554863 0.961052i
\(342\) 0 0
\(343\) 19.0540 1.02882
\(344\) 0 0
\(345\) −16.8078 29.1119i −0.904900 1.56733i
\(346\) 0 0
\(347\) 17.5270 + 30.3576i 0.940898 + 1.62968i 0.763763 + 0.645497i \(0.223350\pi\)
0.177135 + 0.984187i \(0.443317\pi\)
\(348\) 0 0
\(349\) −10.2808 + 17.8068i −0.550317 + 0.953178i 0.447934 + 0.894067i \(0.352160\pi\)
−0.998251 + 0.0591110i \(0.981173\pi\)
\(350\) 0 0
\(351\) 4.80776 1.94528i 0.256619 0.103831i
\(352\) 0 0
\(353\) 4.50000 7.79423i 0.239511 0.414845i −0.721063 0.692869i \(-0.756346\pi\)
0.960574 + 0.278024i \(0.0896796\pi\)
\(354\) 0 0
\(355\) 13.6847 + 23.7025i 0.726306 + 1.25800i
\(356\) 0 0
\(357\) −16.4039 28.4124i −0.868186 1.50374i
\(358\) 0 0
\(359\) −4.49242 −0.237101 −0.118550 0.992948i \(-0.537825\pi\)
−0.118550 + 0.992948i \(0.537825\pi\)
\(360\) 0 0
\(361\) 6.21922 10.7720i 0.327328 0.566948i
\(362\) 0 0
\(363\) −11.3693 −0.596734
\(364\) 0 0
\(365\) 4.68466 0.245206
\(366\) 0 0
\(367\) 16.0885 27.8662i 0.839815 1.45460i −0.0502341 0.998737i \(-0.515997\pi\)
0.890049 0.455865i \(-0.150670\pi\)
\(368\) 0 0
\(369\) 32.9309 1.71431
\(370\) 0 0
\(371\) 5.68466 + 9.84612i 0.295133 + 0.511185i
\(372\) 0 0
\(373\) 5.62311 + 9.73950i 0.291153 + 0.504292i 0.974083 0.226192i \(-0.0726277\pi\)
−0.682929 + 0.730484i \(0.739294\pi\)
\(374\) 0 0
\(375\) 12.2462 21.2111i 0.632392 1.09533i
\(376\) 0 0
\(377\) 2.50000 17.8536i 0.128757 0.919506i
\(378\) 0 0
\(379\) 12.9654 22.4568i 0.665990 1.15353i −0.313026 0.949744i \(-0.601343\pi\)
0.979016 0.203783i \(-0.0653239\pi\)
\(380\) 0 0
\(381\) −16.4039 28.4124i −0.840396 1.45561i
\(382\) 0 0
\(383\) −8.08854 14.0098i −0.413305 0.715865i 0.581944 0.813229i \(-0.302292\pi\)
−0.995249 + 0.0973636i \(0.968959\pi\)
\(384\) 0 0
\(385\) 23.3693 1.19101
\(386\) 0 0
\(387\) 11.6847 20.2384i 0.593965 1.02878i
\(388\) 0 0
\(389\) −17.3153 −0.877923 −0.438961 0.898506i \(-0.644653\pi\)
−0.438961 + 0.898506i \(0.644653\pi\)
\(390\) 0 0
\(391\) 18.4233 0.931706
\(392\) 0 0
\(393\) −23.3693 + 40.4768i −1.17883 + 2.04179i
\(394\) 0 0
\(395\) 14.2462 0.716805
\(396\) 0 0
\(397\) 10.8423 + 18.7795i 0.544161 + 0.942514i 0.998659 + 0.0517667i \(0.0164852\pi\)
−0.454498 + 0.890748i \(0.650181\pi\)
\(398\) 0 0
\(399\) −8.40388 14.5560i −0.420720 0.728709i
\(400\) 0 0
\(401\) 4.74621 8.22068i 0.237014 0.410521i −0.722842 0.691014i \(-0.757164\pi\)
0.959856 + 0.280492i \(0.0904978\pi\)
\(402\) 0 0
\(403\) −26.7386 + 10.8188i −1.33195 + 0.538921i
\(404\) 0 0
\(405\) −12.4654 + 21.5908i −0.619412 + 1.07285i
\(406\) 0 0
\(407\) 1.28078 + 2.21837i 0.0634857 + 0.109961i
\(408\) 0 0
\(409\) −0.623106 1.07925i −0.0308106 0.0533655i 0.850209 0.526445i \(-0.176476\pi\)
−0.881020 + 0.473080i \(0.843142\pi\)
\(410\) 0 0
\(411\) −55.0540 −2.71561
\(412\) 0 0
\(413\) −3.28078 + 5.68247i −0.161436 + 0.279616i
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 50.4233 2.46924
\(418\) 0 0
\(419\) 6.96543 12.0645i 0.340284 0.589389i −0.644202 0.764856i \(-0.722810\pi\)
0.984485 + 0.175467i \(0.0561435\pi\)
\(420\) 0 0
\(421\) −21.3153 −1.03885 −0.519423 0.854517i \(-0.673853\pi\)
−0.519423 + 0.854517i \(0.673853\pi\)
\(422\) 0 0
\(423\) −7.12311 12.3376i −0.346337 0.599874i
\(424\) 0 0
\(425\) 19.2116 + 33.2755i 0.931902 + 1.61410i
\(426\) 0 0
\(427\) −9.28078 + 16.0748i −0.449128 + 0.777913i
\(428\) 0 0
\(429\) −18.6501 14.5560i −0.900435 0.702768i
\(430\) 0 0
\(431\) −1.03457 + 1.79192i −0.0498333 + 0.0863137i −0.889866 0.456222i \(-0.849202\pi\)
0.840033 + 0.542536i \(0.182536\pi\)
\(432\) 0 0
\(433\) 0.746211 + 1.29248i 0.0358606 + 0.0621124i 0.883399 0.468622i \(-0.155249\pi\)
−0.847538 + 0.530735i \(0.821916\pi\)
\(434\) 0 0
\(435\) −22.8078 39.5042i −1.09355 1.89408i
\(436\) 0 0
\(437\) 9.43845 0.451502
\(438\) 0 0
\(439\) 18.9654 32.8491i 0.905171 1.56780i 0.0844831 0.996425i \(-0.473076\pi\)
0.820688 0.571377i \(-0.193591\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) 21.7538 1.03355 0.516777 0.856120i \(-0.327132\pi\)
0.516777 + 0.856120i \(0.327132\pi\)
\(444\) 0 0
\(445\) −17.2462 + 29.8713i −0.817549 + 1.41604i
\(446\) 0 0
\(447\) 33.9309 1.60488
\(448\) 0 0
\(449\) −6.52699 11.3051i −0.308028 0.533519i 0.669903 0.742448i \(-0.266336\pi\)
−0.977931 + 0.208929i \(0.933002\pi\)
\(450\) 0 0
\(451\) −11.8423 20.5115i −0.557634 0.965850i
\(452\) 0 0
\(453\) 16.0000 27.7128i 0.751746 1.30206i
\(454\) 0 0
\(455\) −25.9309 20.2384i −1.21566 0.948792i
\(456\) 0 0
\(457\) 4.50000 7.79423i 0.210501 0.364599i −0.741370 0.671096i \(-0.765824\pi\)
0.951871 + 0.306497i \(0.0991571\pi\)
\(458\) 0 0
\(459\) 3.59612 + 6.22866i 0.167852 + 0.290729i
\(460\) 0 0
\(461\) 4.74621 + 8.22068i 0.221053 + 0.382875i 0.955128 0.296193i \(-0.0957173\pi\)
−0.734075 + 0.679068i \(0.762384\pi\)
\(462\) 0 0
\(463\) 32.9848 1.53294 0.766468 0.642283i \(-0.222012\pi\)
0.766468 + 0.642283i \(0.222012\pi\)
\(464\) 0 0
\(465\) −36.4924 + 63.2067i −1.69230 + 2.93114i
\(466\) 0 0
\(467\) 9.75379 0.451352 0.225676 0.974202i \(-0.427541\pi\)
0.225676 + 0.974202i \(0.427541\pi\)
\(468\) 0 0
\(469\) 24.1771 1.11639
\(470\) 0 0
\(471\) 22.8078 39.5042i 1.05093 1.82026i
\(472\) 0 0
\(473\) −16.8078 −0.772822
\(474\) 0 0
\(475\) 9.84233 + 17.0474i 0.451597 + 0.782189i
\(476\) 0 0
\(477\) −7.90388 13.6899i −0.361894 0.626819i
\(478\) 0 0
\(479\) −16.6501 + 28.8388i −0.760762 + 1.31768i 0.181696 + 0.983355i \(0.441841\pi\)
−0.942458 + 0.334324i \(0.891492\pi\)
\(480\) 0 0
\(481\) 0.500000 3.57071i 0.0227980 0.162811i
\(482\) 0 0
\(483\) −12.0885 + 20.9380i −0.550048 + 0.952710i
\(484\) 0 0
\(485\) 5.00000 + 8.66025i 0.227038 + 0.393242i
\(486\) 0 0
\(487\) 19.2808 + 33.3953i 0.873695 + 1.51328i 0.858146 + 0.513406i \(0.171616\pi\)
0.0155493 + 0.999879i \(0.495050\pi\)
\(488\) 0 0
\(489\) 15.1922 0.687017
\(490\) 0 0
\(491\) −17.5270 + 30.3576i −0.790982 + 1.37002i 0.134378 + 0.990930i \(0.457096\pi\)
−0.925360 + 0.379091i \(0.876237\pi\)
\(492\) 0 0
\(493\) 25.0000 1.12594
\(494\) 0 0
\(495\) −32.4924 −1.46043
\(496\) 0 0
\(497\) 9.84233 17.0474i 0.441489 0.764681i
\(498\) 0 0
\(499\) 16.4924 0.738302 0.369151 0.929369i \(-0.379648\pi\)
0.369151 + 0.929369i \(0.379648\pi\)
\(500\) 0 0
\(501\) 6.96543 + 12.0645i 0.311193 + 0.539002i
\(502\) 0 0
\(503\) 10.1577 + 17.5936i 0.452908 + 0.784460i 0.998565 0.0535486i \(-0.0170532\pi\)
−0.545657 + 0.838009i \(0.683720\pi\)
\(504\) 0 0
\(505\) 9.34233 16.1814i 0.415728 0.720062i
\(506\) 0 0
\(507\) 8.08854 + 32.3029i 0.359225 + 1.43462i
\(508\) 0 0
\(509\) 16.5000 28.5788i 0.731350 1.26673i −0.224957 0.974369i \(-0.572224\pi\)
0.956306 0.292366i \(-0.0944425\pi\)
\(510\) 0 0
\(511\) −1.68466 2.91791i −0.0745249 0.129081i
\(512\) 0 0
\(513\) 1.84233 + 3.19101i 0.0813408 + 0.140886i
\(514\) 0 0
\(515\) −50.7386 −2.23581
\(516\) 0 0
\(517\) −5.12311 + 8.87348i −0.225314 + 0.390255i
\(518\) 0 0
\(519\) −40.8078 −1.79126
\(520\) 0 0
\(521\) −28.0540 −1.22907 −0.614533 0.788891i \(-0.710656\pi\)
−0.614533 + 0.788891i \(0.710656\pi\)
\(522\) 0 0
\(523\) −20.6501 + 35.7670i −0.902966 + 1.56398i −0.0793404 + 0.996848i \(0.525281\pi\)
−0.823625 + 0.567135i \(0.808052\pi\)
\(524\) 0 0
\(525\) −50.4233 −2.20065
\(526\) 0 0
\(527\) −20.0000 34.6410i −0.871214 1.50899i
\(528\) 0 0
\(529\) 4.71165 + 8.16081i 0.204854 + 0.354818i
\(530\) 0 0
\(531\) 4.56155 7.90084i 0.197955 0.342867i
\(532\) 0 0
\(533\) −4.62311 + 33.0156i −0.200249 + 1.43006i
\(534\) 0 0
\(535\) −6.56155 + 11.3649i −0.283681 + 0.491349i
\(536\) 0 0
\(537\) −5.52699 9.57302i −0.238507 0.413106i
\(538\) 0 0
\(539\) 0.561553 + 0.972638i 0.0241878 + 0.0418945i
\(540\) 0 0
\(541\) 6.68466 0.287396 0.143698 0.989622i \(-0.454101\pi\)
0.143698 + 0.989622i \(0.454101\pi\)
\(542\) 0 0
\(543\) 12.5616 21.7572i 0.539068 0.933693i
\(544\) 0 0
\(545\) −29.3693 −1.25804
\(546\) 0 0
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 0 0
\(549\) 12.9039 22.3502i 0.550724 0.953882i
\(550\) 0 0
\(551\) 12.8078 0.545629
\(552\) 0 0
\(553\) −5.12311 8.87348i −0.217857 0.377339i
\(554\) 0 0
\(555\) −4.56155 7.90084i −0.193627 0.335372i
\(556\) 0 0
\(557\) 0.746211 1.29248i 0.0316180 0.0547640i −0.849783 0.527132i \(-0.823267\pi\)
0.881401 + 0.472368i \(0.156601\pi\)
\(558\) 0 0
\(559\) 18.6501 + 14.5560i 0.788815 + 0.615651i
\(560\) 0 0
\(561\) 16.4039 28.4124i 0.692572 1.19957i
\(562\) 0 0
\(563\) 15.5270 + 26.8935i 0.654385 + 1.13343i 0.982048 + 0.188633i \(0.0604055\pi\)
−0.327663 + 0.944795i \(0.606261\pi\)
\(564\) 0 0
\(565\) 16.4654 + 28.5190i 0.692706 + 1.19980i
\(566\) 0 0
\(567\) 17.9309 0.753026
\(568\) 0 0
\(569\) −3.15767 + 5.46925i −0.132376 + 0.229283i −0.924592 0.380958i \(-0.875594\pi\)
0.792216 + 0.610241i \(0.208927\pi\)
\(570\) 0 0
\(571\) 24.4924 1.02498 0.512488 0.858694i \(-0.328724\pi\)
0.512488 + 0.858694i \(0.328724\pi\)
\(572\) 0 0
\(573\) −11.0540 −0.461786
\(574\) 0 0
\(575\) 14.1577 24.5218i 0.590416 1.02263i
\(576\) 0 0
\(577\) −31.5616 −1.31392 −0.656962 0.753923i \(-0.728159\pi\)
−0.656962 + 0.753923i \(0.728159\pi\)
\(578\) 0 0
\(579\) −3.84233 6.65511i −0.159682 0.276577i
\(580\) 0 0
\(581\) 2.87689 + 4.98293i 0.119354 + 0.206727i
\(582\) 0 0
\(583\) −5.68466 + 9.84612i −0.235434 + 0.407785i
\(584\) 0 0
\(585\) 36.0540 + 28.1393i 1.49065 + 1.16342i
\(586\) 0 0
\(587\) 6.96543 12.0645i 0.287494 0.497955i −0.685717 0.727869i \(-0.740511\pi\)
0.973211 + 0.229914i \(0.0738444\pi\)
\(588\) 0 0
\(589\) −10.2462 17.7470i −0.422188 0.731251i
\(590\) 0 0
\(591\) −2.96543 5.13628i −0.121982 0.211278i
\(592\) 0 0
\(593\) −23.5616 −0.967557 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(594\) 0 0
\(595\) 22.8078 39.5042i 0.935027 1.61951i
\(596\) 0 0
\(597\) 24.1771 0.989502
\(598\) 0 0
\(599\) −22.7386 −0.929075 −0.464538 0.885553i \(-0.653779\pi\)
−0.464538 + 0.885553i \(0.653779\pi\)
\(600\) 0 0
\(601\) 18.9924 32.8958i 0.774717 1.34185i −0.160236 0.987079i \(-0.551226\pi\)
0.934953 0.354771i \(-0.115441\pi\)
\(602\) 0 0
\(603\) −33.6155 −1.36893
\(604\) 0 0
\(605\) −7.90388 13.6899i −0.321339 0.556575i
\(606\) 0 0
\(607\) −15.8423 27.4397i −0.643020 1.11374i −0.984755 0.173947i \(-0.944348\pi\)
0.341735 0.939796i \(-0.388986\pi\)
\(608\) 0 0
\(609\) −16.4039 + 28.4124i −0.664719 + 1.15133i
\(610\) 0 0
\(611\) 13.3693 5.40938i 0.540865 0.218840i
\(612\) 0 0
\(613\) 4.50000 7.79423i 0.181753 0.314806i −0.760724 0.649075i \(-0.775156\pi\)
0.942478 + 0.334269i \(0.108489\pi\)
\(614\) 0 0
\(615\) 42.1771 + 73.0528i 1.70074 + 2.94578i
\(616\) 0 0
\(617\) −4.37689 7.58100i −0.176207 0.305200i 0.764371 0.644776i \(-0.223050\pi\)
−0.940578 + 0.339577i \(0.889716\pi\)
\(618\) 0 0
\(619\) 36.9848 1.48655 0.743273 0.668988i \(-0.233272\pi\)
0.743273 + 0.668988i \(0.233272\pi\)
\(620\) 0 0
\(621\) 2.65009 4.59010i 0.106345 0.184194i
\(622\) 0 0
\(623\) 24.8078 0.993902
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) 8.40388 14.5560i 0.335619 0.581309i
\(628\) 0 0
\(629\) 5.00000 0.199363
\(630\) 0 0
\(631\) 13.5270 + 23.4294i 0.538501 + 0.932711i 0.998985 + 0.0450430i \(0.0143425\pi\)
−0.460484 + 0.887668i \(0.652324\pi\)
\(632\) 0 0
\(633\) −15.7732 27.3200i −0.626928 1.08587i
\(634\) 0 0
\(635\) 22.8078 39.5042i 0.905099 1.56768i
\(636\) 0 0
\(637\) 0.219224 1.56557i 0.00868596 0.0620301i
\(638\) 0 0
\(639\) −13.6847 + 23.7025i −0.541357 + 0.937657i
\(640\) 0 0
\(641\) −15.7462 27.2732i −0.621938 1.07723i −0.989124 0.147081i \(-0.953012\pi\)
0.367187 0.930147i \(-0.380321\pi\)
\(642\) 0 0
\(643\) 16.6501 + 28.8388i 0.656616 + 1.13729i 0.981486 + 0.191533i \(0.0613459\pi\)
−0.324871 + 0.945758i \(0.605321\pi\)
\(644\) 0 0
\(645\) 59.8617 2.35705
\(646\) 0 0
\(647\) 2.96543 5.13628i 0.116583 0.201928i −0.801828 0.597555i \(-0.796139\pi\)
0.918412 + 0.395626i \(0.129472\pi\)
\(648\) 0 0
\(649\) −6.56155 −0.257563
\(650\) 0 0
\(651\) 52.4924 2.05734
\(652\) 0 0
\(653\) −22.7732 + 39.4443i −0.891184 + 1.54358i −0.0527268 + 0.998609i \(0.516791\pi\)
−0.838457 + 0.544967i \(0.816542\pi\)
\(654\) 0 0
\(655\) −64.9848 −2.53917
\(656\) 0 0
\(657\) 2.34233 + 4.05703i 0.0913830 + 0.158280i
\(658\) 0 0
\(659\) −8.71922 15.1021i −0.339653 0.588296i 0.644715 0.764423i \(-0.276976\pi\)
−0.984367 + 0.176128i \(0.943643\pi\)
\(660\) 0 0
\(661\) 21.8693 37.8788i 0.850618 1.47331i −0.0300338 0.999549i \(-0.509561\pi\)
0.880652 0.473764i \(-0.157105\pi\)
\(662\) 0 0
\(663\) −42.8078 + 17.3205i −1.66252 + 0.672673i
\(664\) 0 0
\(665\) 11.6847 20.2384i 0.453112 0.784812i
\(666\) 0 0
\(667\) −9.21165 15.9550i −0.356676 0.617782i
\(668\) 0 0
\(669\) 4.71922 + 8.17394i 0.182456 + 0.316023i
\(670\) 0 0
\(671\) −18.5616 −0.716561
\(672\) 0 0
\(673\) −0.376894 + 0.652800i −0.0145282 + 0.0251636i −0.873198 0.487365i \(-0.837958\pi\)
0.858670 + 0.512529i \(0.171291\pi\)
\(674\) 0 0
\(675\) 11.0540 0.425468
\(676\) 0 0
\(677\) 20.7386 0.797050 0.398525 0.917157i \(-0.369522\pi\)
0.398525 + 0.917157i \(0.369522\pi\)
\(678\) 0 0
\(679\) 3.59612 6.22866i 0.138006 0.239034i
\(680\) 0 0
\(681\) −18.0691 −0.692411
\(682\) 0 0
\(683\) −9.84233 17.0474i −0.376606 0.652301i 0.613960 0.789337i \(-0.289576\pi\)
−0.990566 + 0.137036i \(0.956242\pi\)
\(684\) 0 0
\(685\) −38.2732 66.2911i −1.46234 2.53285i
\(686\) 0 0
\(687\) 5.43845 9.41967i 0.207490 0.359383i
\(688\) 0 0
\(689\) 14.8348 6.00231i 0.565159 0.228670i
\(690\) 0 0
\(691\) 10.7192 18.5662i 0.407778 0.706293i −0.586862 0.809687i \(-0.699637\pi\)
0.994640 + 0.103394i \(0.0329702\pi\)
\(692\) 0 0
\(693\) 11.6847 + 20.2384i 0.443863 + 0.768794i
\(694\) 0 0
\(695\) 35.0540 + 60.7153i 1.32967 + 2.30306i
\(696\) 0 0
\(697\) −46.2311 −1.75113
\(698\) 0 0
\(699\) −5.43845 + 9.41967i −0.205701 + 0.356285i
\(700\) 0 0
\(701\) −16.7386 −0.632209 −0.316105 0.948724i \(-0.602375\pi\)
−0.316105 + 0.948724i \(0.602375\pi\)
\(702\) 0 0
\(703\) 2.56155 0.0966108
\(704\) 0 0
\(705\) 18.2462 31.6034i 0.687192 1.19025i
\(706\) 0 0
\(707\) −13.4384 −0.505405
\(708\) 0 0
\(709\) 7.86932 + 13.6301i 0.295538 + 0.511888i 0.975110 0.221722i \(-0.0711676\pi\)
−0.679572 + 0.733609i \(0.737834\pi\)
\(710\) 0 0
\(711\) 7.12311 + 12.3376i 0.267137 + 0.462695i
\(712\) 0 0
\(713\) −14.7386 + 25.5281i −0.551966 + 0.956033i
\(714\) 0 0
\(715\) 4.56155 32.5760i 0.170592 1.21827i
\(716\) 0 0
\(717\) −2.24621 + 3.89055i −0.0838863 + 0.145295i
\(718\) 0 0
\(719\) 7.03457 + 12.1842i 0.262345 + 0.454395i 0.966865 0.255290i \(-0.0821708\pi\)
−0.704520 + 0.709685i \(0.748837\pi\)
\(720\) 0 0
\(721\) 18.2462 + 31.6034i 0.679524 + 1.17697i
\(722\) 0 0
\(723\) −65.3002 −2.42854
\(724\) 0 0
\(725\) 19.2116 33.2755i 0.713503 1.23582i
\(726\) 0 0
\(727\) −42.7386 −1.58509 −0.792544 0.609815i \(-0.791244\pi\)
−0.792544 + 0.609815i \(0.791244\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −16.4039 + 28.4124i −0.606719 + 1.05087i
\(732\) 0 0
\(733\) −21.8078 −0.805488 −0.402744 0.915313i \(-0.631944\pi\)
−0.402744 + 0.915313i \(0.631944\pi\)
\(734\) 0 0
\(735\) −2.00000 3.46410i −0.0737711 0.127775i
\(736\) 0 0
\(737\) 12.0885 + 20.9380i 0.445287 + 0.771260i
\(738\) 0 0
\(739\) −9.03457 + 15.6483i −0.332342 + 0.575633i −0.982971 0.183763i \(-0.941172\pi\)
0.650629 + 0.759396i \(0.274505\pi\)
\(740\) 0 0
\(741\) −21.9309 + 8.87348i −0.805651 + 0.325975i
\(742\) 0 0
\(743\) 18.9654 32.8491i 0.695774 1.20512i −0.274145 0.961688i \(-0.588395\pi\)
0.969919 0.243428i \(-0.0782720\pi\)
\(744\) 0 0
\(745\) 23.5885 + 40.8566i 0.864217 + 1.49687i
\(746\) 0 0
\(747\) −4.00000 6.92820i −0.146352 0.253490i
\(748\) 0 0
\(749\) 9.43845 0.344873
\(750\) 0 0
\(751\) −2.65009 + 4.59010i −0.0967033 + 0.167495i −0.910318 0.413909i \(-0.864163\pi\)
0.813615 + 0.581404i \(0.197496\pi\)
\(752\) 0 0
\(753\) 76.6695 2.79399
\(754\) 0 0
\(755\) 44.4924 1.61925
\(756\) 0 0
\(757\) −26.7732 + 46.3725i −0.973088 + 1.68544i −0.286984 + 0.957935i \(0.592653\pi\)
−0.686104 + 0.727503i \(0.740681\pi\)
\(758\) 0 0
\(759\) −24.1771 −0.877572
\(760\) 0 0
\(761\) 25.9654 + 44.9735i 0.941246 + 1.63029i 0.763098 + 0.646283i \(0.223677\pi\)
0.178148 + 0.984004i \(0.442989\pi\)
\(762\) 0 0
\(763\) 10.5616 + 18.2931i 0.382354 + 0.662256i
\(764\) 0 0
\(765\) −31.7116 + 54.9262i −1.14654 + 1.98586i
\(766\) 0 0
\(767\) 7.28078 + 5.68247i 0.262894 + 0.205182i
\(768\) 0 0
\(769\) 13.9654 24.1888i 0.503606 0.872272i −0.496385 0.868103i \(-0.665340\pi\)
0.999991 0.00416940i \(-0.00132717\pi\)
\(770\) 0 0
\(771\) 14.4039 + 24.9483i 0.518743 + 0.898489i
\(772\) 0 0
\(773\) −27.4039 47.4649i −0.985649 1.70719i −0.639016 0.769194i \(-0.720658\pi\)
−0.346633 0.938001i \(-0.612675\pi\)
\(774\) 0 0
\(775\) −61.4773 −2.20833
\(776\) 0 0
\(777\) −3.28078 + 5.68247i −0.117697 + 0.203858i
\(778\) 0 0
\(779\) −23.6847 −0.848591
\(780\) 0 0
\(781\) 19.6847 0.704372
\(782\) 0 0
\(783\) 3.59612 6.22866i 0.128515 0.222594i
\(784\) 0 0
\(785\) 63.4233 2.26367
\(786\) 0 0
\(787\) −17.2116 29.8114i −0.613529 1.06266i −0.990641 0.136496i \(-0.956416\pi\)
0.377112 0.926168i \(-0.376917\pi\)
\(788\) 0 0
\(789\) −11.2808 19.5389i −0.401606 0.695602i
\(790\) 0 0
\(791\) 11.8423 20.5115i 0.421065 0.729306i
\(792\) 0 0
\(793\) 20.5961 + 16.0748i 0.731390 + 0.570832i
\(794\) 0 0
\(795\) 20.2462 35.0675i 0.718059 1.24371i
\(796\) 0 0
\(797\) 7.96543 + 13.7965i 0.282150 + 0.488698i 0.971914 0.235336i \(-0.0756190\pi\)
−0.689764 + 0.724034i \(0.742286\pi\)
\(798\) 0 0
\(799\) 10.0000 + 17.3205i 0.353775 + 0.612756i
\(800\) 0 0
\(801\) −34.4924 −1.21873
\(802\) 0 0
\(803\) 1.68466 2.91791i 0.0594503 0.102971i
\(804\) 0 0
\(805\) −33.6155 −1.18479
\(806\) 0 0
\(807\) 37.9309 1.33523
\(808\) 0 0
\(809\) 3.37689 5.84895i 0.118725 0.205638i −0.800537 0.599283i \(-0.795453\pi\)
0.919263 + 0.393644i \(0.128786\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) 6.96543 + 12.0645i 0.244288 + 0.423120i
\(814\) 0 0
\(815\) 10.5616 + 18.2931i 0.369955 + 0.640781i
\(816\) 0 0
\(817\) −8.40388 + 14.5560i −0.294015 + 0.509248i
\(818\) 0 0
\(819\) 4.56155 32.5760i 0.159394 1.13830i
\(820\) 0 0
\(821\) −3.40388 + 5.89570i −0.118796 + 0.205761i −0.919291 0.393579i \(-0.871237\pi\)
0.800495 + 0.599340i \(0.204570\pi\)
\(822\) 0 0
\(823\) −22.0885 38.2585i −0.769958 1.33361i −0.937585 0.347756i \(-0.886944\pi\)
0.167627 0.985851i \(-0.446390\pi\)
\(824\) 0 0
\(825\) −25.2116 43.6679i −0.877757 1.52032i
\(826\) 0 0
\(827\) 28.9848 1.00790 0.503951 0.863732i \(-0.331879\pi\)
0.503951 + 0.863732i \(0.331879\pi\)
\(828\) 0 0
\(829\) −19.7462 + 34.2014i −0.685814 + 1.18787i 0.287366 + 0.957821i \(0.407220\pi\)
−0.973180 + 0.230044i \(0.926113\pi\)
\(830\) 0 0
\(831\) 28.1771 0.977452
\(832\) 0 0
\(833\) 2.19224 0.0759565
\(834\) 0 0
\(835\) −9.68466 + 16.7743i −0.335151 + 0.580499i
\(836\) 0 0
\(837\) −11.5076 −0.397760
\(838\) 0 0
\(839\) −19.8423 34.3679i −0.685033 1.18651i −0.973426 0.229000i \(-0.926454\pi\)
0.288393 0.957512i \(-0.406879\pi\)
\(840\) 0 0
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) 0 0
\(843\) −18.8078 + 32.5760i −0.647774 + 1.12198i
\(844\) 0 0
\(845\) −33.2732 + 32.1963i −1.14463 + 1.10759i
\(846\) 0 0
\(847\) −5.68466 + 9.84612i −0.195327 + 0.338317i
\(848\) 0 0
\(849\) 27.4579 + 47.5584i 0.942351 + 1.63220i
\(850\) 0 0
\(851\) −1.84233 3.19101i −0.0631542 0.109386i
\(852\) 0 0
\(853\) 13.4233 0.459605 0.229802 0.973237i \(-0.426192\pi\)
0.229802 + 0.973237i \(0.426192\pi\)
\(854\) 0 0
\(855\) −16.2462 + 28.1393i −0.555609 + 0.962343i
\(856\) 0 0
\(857\) −52.0540 −1.77813 −0.889065 0.457781i \(-0.848644\pi\)
−0.889065 + 0.457781i \(0.848644\pi\)
\(858\) 0 0
\(859\) −5.75379 −0.196317 −0.0981584 0.995171i \(-0.531295\pi\)
−0.0981584 + 0.995171i \(0.531295\pi\)
\(860\) 0 0
\(861\) 30.3348 52.5413i 1.03381 1.79060i
\(862\) 0 0
\(863\) −38.2462 −1.30192 −0.650958 0.759114i \(-0.725633\pi\)
−0.650958 + 0.759114i \(0.725633\pi\)
\(864\) 0 0
\(865\) −28.3693 49.1371i −0.964586 1.67071i
\(866\) 0 0
\(867\) −10.2462 17.7470i −0.347980 0.602718i
\(868\) 0 0
\(869\) 5.12311 8.87348i 0.173789 0.301012i
\(870\) 0 0
\(871\) 4.71922 33.7020i 0.159905 1.14195i
\(872\) 0 0
\(873\) −5.00000 + 8.66025i −0.169224 + 0.293105i
\(874\) 0 0
\(875\) −12.2462 21.2111i −0.413998 0.717065i
\(876\) 0 0
\(877\) −4.86932 8.43390i −0.164425 0.284793i 0.772026 0.635591i \(-0.219244\pi\)
−0.936451 + 0.350798i \(0.885910\pi\)
\(878\) 0 0
\(879\) 29.4384 0.992934
\(880\) 0 0
\(881\) −0.623106 + 1.07925i −0.0209930 + 0.0363609i −0.876331 0.481709i \(-0.840016\pi\)
0.855338 + 0.518070i \(0.173349\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 23.3693 0.785551
\(886\) 0 0
\(887\) −4.15767 + 7.20130i −0.139601 + 0.241796i −0.927346 0.374206i \(-0.877915\pi\)
0.787745 + 0.616002i \(0.211249\pi\)
\(888\) 0 0
\(889\) −32.8078 −1.10034
\(890\) 0 0
\(891\) 8.96543 + 15.5286i 0.300353 + 0.520227i
\(892\) 0 0
\(893\) 5.12311 + 8.87348i 0.171438 + 0.296940i
\(894\) 0 0
\(895\) 7.68466 13.3102i 0.256870 0.444912i
\(896\) 0 0
\(897\) 26.8272 + 20.9380i 0.895733 + 0.699098i
\(898\) 0 0
\(899\) −20.0000 + 34.6410i −0.667037 + 1.15534i
\(900\) 0 0
\(901\) 11.0961 + 19.2190i 0.369665 + 0.640279i
\(902\) 0 0
\(903\) −21.5270 37.2858i −0.716373 1.24079i
\(904\) 0 0
\(905\) 34.9309 1.16114
\(906\) 0 0
\(907\) −6.65009 + 11.5183i −0.220813 + 0.382459i −0.955055 0.296429i \(-0.904204\pi\)
0.734242 + 0.678888i \(0.237538\pi\)
\(908\) 0 0
\(909\) 18.6847 0.619731
\(910\) 0 0
\(911\) 18.7386 0.620839 0.310419 0.950600i \(-0.399531\pi\)
0.310419 + 0.950600i \(0.399531\pi\)
\(912\) 0 0
\(913\) −2.87689 + 4.98293i −0.0952113 + 0.164911i
\(914\) 0 0
\(915\) 66.1080 2.18546
\(916\) 0 0
\(917\) 23.3693 + 40.4768i 0.771723 + 1.33666i
\(918\) 0 0
\(919\) 5.77320 + 9.99947i 0.190440 + 0.329852i 0.945396 0.325923i \(-0.105675\pi\)
−0.754956 + 0.655775i \(0.772342\pi\)
\(920\) 0 0
\(921\) 33.6155 58.2238i 1.10767 1.91854i
\(922\) 0 0
\(923\) −21.8423 17.0474i −0.718949 0.561122i
\(924\) 0 0
\(925\) 3.84233 6.65511i 0.126335 0.218819i
\(926\) 0 0
\(927\) −25.3693 43.9409i −0.833238 1.44321i
\(928\) 0 0
\(929\) −13.9924 24.2356i −0.459076 0.795144i 0.539836 0.841770i \(-0.318486\pi\)
−0.998912 + 0.0466265i \(0.985153\pi\)
\(930\) 0 0
\(931\) 1.12311 0.0368083
\(932\) 0 0
\(933\) 18.2462 31.6034i 0.597354 1.03465i
\(934\) 0 0
\(935\) 45.6155 1.49179
\(936\) 0 0
\(937\) −1.31534 −0.0429703 −0.0214852 0.999769i \(-0.506839\pi\)
−0.0214852 + 0.999769i \(0.506839\pi\)
\(938\) 0 0
\(939\) 41.3002 71.5340i 1.34778 2.33442i
\(940\) 0 0
\(941\) 14.0000 0.456387 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(942\) 0 0
\(943\) 17.0346 + 29.5047i 0.554722 + 0.960806i
\(944\) 0 0
\(945\) −6.56155 11.3649i −0.213447 0.369702i
\(946\) 0 0
\(947\) 23.2116 40.2038i 0.754277 1.30645i −0.191456 0.981501i \(-0.561321\pi\)
0.945733 0.324945i \(-0.105346\pi\)
\(948\) 0 0
\(949\) −4.39630 + 1.77879i −0.142710 + 0.0577421i
\(950\) 0 0
\(951\) −21.0540 + 36.4666i −0.682722 + 1.18251i
\(952\) 0 0
\(953\) 2.59612 + 4.49661i 0.0840965 + 0.145659i 0.905006 0.425399i \(-0.139866\pi\)
−0.820909 + 0.571059i \(0.806533\pi\)
\(954\) 0 0
\(955\) −7.68466 13.3102i −0.248670 0.430709i
\(956\) 0 0
\(957\) −32.8078 −1.06052
\(958\) 0 0
\(959\) −27.5270 + 47.6781i −0.888893 + 1.53961i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −13.1231 −0.422886
\(964\) 0 0
\(965\) 5.34233 9.25319i 0.171976 0.297871i
\(966\) 0 0
\(967\) 22.2462 0.715390 0.357695 0.933838i \(-0.383563\pi\)
0.357695 + 0.933838i \(0.383563\pi\)
\(968\) 0 0
\(969\) −16.4039 28.4124i −0.526969 0.912736i
\(970\) 0 0
\(971\) −15.8423 27.4397i −0.508405 0.880582i −0.999953 0.00973207i \(-0.996902\pi\)
0.491548 0.870850i \(-0.336431\pi\)
\(972\) 0 0
\(973\) 25.2116 43.6679i 0.808248 1.39993i
\(974\) 0 0
\(975\) −9.84233 + 70.2883i −0.315207 + 2.25103i
\(976\) 0 0
\(977\) 7.62311 13.2036i 0.243885 0.422421i −0.717933 0.696113i \(-0.754911\pi\)
0.961817 + 0.273692i \(0.0882448\pi\)
\(978\) 0 0
\(979\) 12.4039 + 21.4842i 0.396430 + 0.686637i
\(980\) 0 0
\(981\) −14.6847 25.4346i −0.468845 0.812063i
\(982\) 0 0
\(983\) 40.9848 1.30721 0.653607 0.756834i \(-0.273255\pi\)
0.653607 + 0.756834i \(0.273255\pi\)
\(984\) 0 0
\(985\) 4.12311 7.14143i 0.131373 0.227545i
\(986\) 0 0
\(987\) −26.2462 −0.835426
\(988\) 0 0
\(989\) 24.1771 0.768786
\(990\) 0 0
\(991\) −28.6501 + 49.6234i −0.910100 + 1.57634i −0.0961794 + 0.995364i \(0.530662\pi\)
−0.813921 + 0.580976i \(0.802671\pi\)
\(992\) 0 0
\(993\) 56.1771 1.78273
\(994\) 0 0
\(995\) 16.8078 + 29.1119i 0.532842 + 0.922909i
\(996\) 0 0
\(997\) 13.3769 + 23.1695i 0.423650 + 0.733784i 0.996293 0.0860208i \(-0.0274151\pi\)
−0.572643 + 0.819805i \(0.694082\pi\)
\(998\) 0 0
\(999\) 0.719224 1.24573i 0.0227552 0.0394132i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.2.i.b.9.1 4
3.2 odd 2 936.2.t.f.217.2 4
4.3 odd 2 208.2.i.e.113.2 4
8.3 odd 2 832.2.i.l.321.1 4
8.5 even 2 832.2.i.o.321.2 4
12.11 even 2 1872.2.t.s.1153.2 4
13.2 odd 12 1352.2.o.c.361.2 8
13.3 even 3 inner 104.2.i.b.81.1 yes 4
13.4 even 6 1352.2.a.h.1.2 2
13.5 odd 4 1352.2.o.c.1161.2 8
13.6 odd 12 1352.2.f.d.337.4 4
13.7 odd 12 1352.2.f.d.337.3 4
13.8 odd 4 1352.2.o.c.1161.1 8
13.9 even 3 1352.2.a.f.1.2 2
13.10 even 6 1352.2.i.e.1329.1 4
13.11 odd 12 1352.2.o.c.361.1 8
13.12 even 2 1352.2.i.e.529.1 4
39.29 odd 6 936.2.t.f.289.2 4
52.3 odd 6 208.2.i.e.81.2 4
52.7 even 12 2704.2.f.l.337.1 4
52.19 even 12 2704.2.f.l.337.2 4
52.35 odd 6 2704.2.a.q.1.1 2
52.43 odd 6 2704.2.a.r.1.1 2
104.3 odd 6 832.2.i.l.705.1 4
104.29 even 6 832.2.i.o.705.2 4
156.107 even 6 1872.2.t.s.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.1 4 1.1 even 1 trivial
104.2.i.b.81.1 yes 4 13.3 even 3 inner
208.2.i.e.81.2 4 52.3 odd 6
208.2.i.e.113.2 4 4.3 odd 2
832.2.i.l.321.1 4 8.3 odd 2
832.2.i.l.705.1 4 104.3 odd 6
832.2.i.o.321.2 4 8.5 even 2
832.2.i.o.705.2 4 104.29 even 6
936.2.t.f.217.2 4 3.2 odd 2
936.2.t.f.289.2 4 39.29 odd 6
1352.2.a.f.1.2 2 13.9 even 3
1352.2.a.h.1.2 2 13.4 even 6
1352.2.f.d.337.3 4 13.7 odd 12
1352.2.f.d.337.4 4 13.6 odd 12
1352.2.i.e.529.1 4 13.12 even 2
1352.2.i.e.1329.1 4 13.10 even 6
1352.2.o.c.361.1 8 13.11 odd 12
1352.2.o.c.361.2 8 13.2 odd 12
1352.2.o.c.1161.1 8 13.8 odd 4
1352.2.o.c.1161.2 8 13.5 odd 4
1872.2.t.s.289.2 4 156.107 even 6
1872.2.t.s.1153.2 4 12.11 even 2
2704.2.a.q.1.1 2 52.35 odd 6
2704.2.a.r.1.1 2 52.43 odd 6
2704.2.f.l.337.1 4 52.7 even 12
2704.2.f.l.337.2 4 52.19 even 12