L(s) = 1 | + 2i·2-s + 3i·3-s − 4·4-s − 6·6-s − 7i·7-s − 8i·8-s − 9·9-s − 12i·12-s + 26i·13-s + 14·14-s + 16·16-s − 18i·17-s − 18i·18-s − 92·19-s + 21·21-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 0.377i·7-s − 0.353i·8-s − 0.333·9-s − 0.288i·12-s + 0.554i·13-s + 0.267·14-s + 0.250·16-s − 0.256i·17-s − 0.235i·18-s − 1.11·19-s + 0.218·21-s + ⋯ |
Λ(s)=(=(1050s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(1050s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1050
= 2⋅3⋅52⋅7
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
61.9520 |
Root analytic conductor: |
7.87095 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1050(799,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1050, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
1.479242460 |
L(21) |
≈ |
1.479242460 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1−3iT |
| 5 | 1 |
| 7 | 1+7iT |
good | 11 | 1+1.33e3T2 |
| 13 | 1−26iT−2.19e3T2 |
| 17 | 1+18iT−4.91e3T2 |
| 19 | 1+92T+6.85e3T2 |
| 23 | 1−1.21e4T2 |
| 29 | 1−6T+2.43e4T2 |
| 31 | 1+4T+2.97e4T2 |
| 37 | 1+410iT−5.06e4T2 |
| 41 | 1−174T+6.89e4T2 |
| 43 | 1−248iT−7.95e4T2 |
| 47 | 1+420iT−1.03e5T2 |
| 53 | 1−102iT−1.48e5T2 |
| 59 | 1−588T+2.05e5T2 |
| 61 | 1−650T+2.26e5T2 |
| 67 | 1+152iT−3.00e5T2 |
| 71 | 1+168T+3.57e5T2 |
| 73 | 1+610iT−3.89e5T2 |
| 79 | 1−1.04e3T+4.93e5T2 |
| 83 | 1+684iT−5.71e5T2 |
| 89 | 1−834T+7.04e5T2 |
| 97 | 1+110iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.428712119352182343826677400094, −8.813300547246414527212662215880, −7.928099136960535259483017847649, −7.03315385832818460396791929396, −6.24152549020998964330523329032, −5.28772071252497435373384869198, −4.37025237511892437856892159129, −3.66979604113024556571203763163, −2.20024820603368514896279211342, −0.48559575863204253630972390157,
0.834702101896117258357679907546, 2.02399222979672837627205515814, 2.90268356798282158583098580144, 4.02711178236988241265120013929, 5.12325342945012997279435123916, 6.04256384218273206046609311524, 6.92428786950056481267015988856, 8.100363265798700095998177848210, 8.543508375563387912046061180746, 9.556963018865082973074995203754