Properties

Label 2-1050-5.4-c3-0-30
Degree $2$
Conductor $1050$
Sign $0.894 - 0.447i$
Analytic cond. $61.9520$
Root an. cond. $7.87095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·2-s + 3i·3-s − 4·4-s − 6·6-s − 7i·7-s − 8i·8-s − 9·9-s − 12i·12-s + 26i·13-s + 14·14-s + 16·16-s − 18i·17-s − 18i·18-s − 92·19-s + 21·21-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 0.377i·7-s − 0.353i·8-s − 0.333·9-s − 0.288i·12-s + 0.554i·13-s + 0.267·14-s + 0.250·16-s − 0.256i·17-s − 0.235i·18-s − 1.11·19-s + 0.218·21-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(61.9520\)
Root analytic conductor: \(7.87095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1050} (799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1050,\ (\ :3/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.479242460\)
\(L(\frac12)\) \(\approx\) \(1.479242460\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2iT \)
3 \( 1 - 3iT \)
5 \( 1 \)
7 \( 1 + 7iT \)
good11 \( 1 + 1.33e3T^{2} \)
13 \( 1 - 26iT - 2.19e3T^{2} \)
17 \( 1 + 18iT - 4.91e3T^{2} \)
19 \( 1 + 92T + 6.85e3T^{2} \)
23 \( 1 - 1.21e4T^{2} \)
29 \( 1 - 6T + 2.43e4T^{2} \)
31 \( 1 + 4T + 2.97e4T^{2} \)
37 \( 1 + 410iT - 5.06e4T^{2} \)
41 \( 1 - 174T + 6.89e4T^{2} \)
43 \( 1 - 248iT - 7.95e4T^{2} \)
47 \( 1 + 420iT - 1.03e5T^{2} \)
53 \( 1 - 102iT - 1.48e5T^{2} \)
59 \( 1 - 588T + 2.05e5T^{2} \)
61 \( 1 - 650T + 2.26e5T^{2} \)
67 \( 1 + 152iT - 3.00e5T^{2} \)
71 \( 1 + 168T + 3.57e5T^{2} \)
73 \( 1 + 610iT - 3.89e5T^{2} \)
79 \( 1 - 1.04e3T + 4.93e5T^{2} \)
83 \( 1 + 684iT - 5.71e5T^{2} \)
89 \( 1 - 834T + 7.04e5T^{2} \)
97 \( 1 + 110iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.428712119352182343826677400094, −8.813300547246414527212662215880, −7.928099136960535259483017847649, −7.03315385832818460396791929396, −6.24152549020998964330523329032, −5.28772071252497435373384869198, −4.37025237511892437856892159129, −3.66979604113024556571203763163, −2.20024820603368514896279211342, −0.48559575863204253630972390157, 0.834702101896117258357679907546, 2.02399222979672837627205515814, 2.90268356798282158583098580144, 4.02711178236988241265120013929, 5.12325342945012997279435123916, 6.04256384218273206046609311524, 6.92428786950056481267015988856, 8.100363265798700095998177848210, 8.543508375563387912046061180746, 9.556963018865082973074995203754

Graph of the $Z$-function along the critical line