Properties

Label 1050.4.g.d
Level 10501050
Weight 44
Character orbit 1050.g
Analytic conductor 61.95261.952
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,4,Mod(799,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.799");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1050=23527 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1050.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 61.952005506061.9520055060
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2iq2+3iq34q46q67iq78iq89q912iq12+26iq13+14q14+16q1618iq1718iq1892q19+21q21+24q2452q26+98iq98+O(q100) q + 2 i q^{2} + 3 i q^{3} - 4 q^{4} - 6 q^{6} - 7 i q^{7} - 8 i q^{8} - 9 q^{9} - 12 i q^{12} + 26 i q^{13} + 14 q^{14} + 16 q^{16} - 18 i q^{17} - 18 i q^{18} - 92 q^{19} + 21 q^{21} + 24 q^{24} - 52 q^{26} + \cdots - 98 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q412q618q9+28q14+32q16184q19+42q21+48q24104q26+12q298q31+72q34+72q36156q39+348q4198q49+108q51+192q96+O(q100) 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} + 28 q^{14} + 32 q^{16} - 184 q^{19} + 42 q^{21} + 48 q^{24} - 104 q^{26} + 12 q^{29} - 8 q^{31} + 72 q^{34} + 72 q^{36} - 156 q^{39} + 348 q^{41} - 98 q^{49} + 108 q^{51}+ \cdots - 192 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1050Z)×\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times.

nn 127127 451451 701701
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
799.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 −6.00000 7.00000i 8.00000i −9.00000 0
799.2 2.00000i 3.00000i −4.00000 0 −6.00000 7.00000i 8.00000i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.4.g.d 2
5.b even 2 1 inner 1050.4.g.d 2
5.c odd 4 1 210.4.a.e 1
5.c odd 4 1 1050.4.a.n 1
15.e even 4 1 630.4.a.w 1
20.e even 4 1 1680.4.a.a 1
35.f even 4 1 1470.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.4.a.e 1 5.c odd 4 1
630.4.a.w 1 15.e even 4 1
1050.4.a.n 1 5.c odd 4 1
1050.4.g.d 2 1.a even 1 1 trivial
1050.4.g.d 2 5.b even 2 1 inner
1470.4.a.g 1 35.f even 4 1
1680.4.a.a 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1050,[χ])S_{4}^{\mathrm{new}}(1050, [\chi]):

T11 T_{11} Copy content Toggle raw display
T132+676 T_{13}^{2} + 676 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+676 T^{2} + 676 Copy content Toggle raw display
1717 T2+324 T^{2} + 324 Copy content Toggle raw display
1919 (T+92)2 (T + 92)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3737 T2+168100 T^{2} + 168100 Copy content Toggle raw display
4141 (T174)2 (T - 174)^{2} Copy content Toggle raw display
4343 T2+61504 T^{2} + 61504 Copy content Toggle raw display
4747 T2+176400 T^{2} + 176400 Copy content Toggle raw display
5353 T2+10404 T^{2} + 10404 Copy content Toggle raw display
5959 (T588)2 (T - 588)^{2} Copy content Toggle raw display
6161 (T650)2 (T - 650)^{2} Copy content Toggle raw display
6767 T2+23104 T^{2} + 23104 Copy content Toggle raw display
7171 (T+168)2 (T + 168)^{2} Copy content Toggle raw display
7373 T2+372100 T^{2} + 372100 Copy content Toggle raw display
7979 (T1048)2 (T - 1048)^{2} Copy content Toggle raw display
8383 T2+467856 T^{2} + 467856 Copy content Toggle raw display
8989 (T834)2 (T - 834)^{2} Copy content Toggle raw display
9797 T2+12100 T^{2} + 12100 Copy content Toggle raw display
show more
show less