Properties

Label 1050.4.g.d
Level $1050$
Weight $4$
Character orbit 1050.g
Analytic conductor $61.952$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,4,Mod(799,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.799");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.9520055060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} + 3 i q^{3} - 4 q^{4} - 6 q^{6} - 7 i q^{7} - 8 i q^{8} - 9 q^{9} - 12 i q^{12} + 26 i q^{13} + 14 q^{14} + 16 q^{16} - 18 i q^{17} - 18 i q^{18} - 92 q^{19} + 21 q^{21} + 24 q^{24} - 52 q^{26} + \cdots - 98 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} + 28 q^{14} + 32 q^{16} - 184 q^{19} + 42 q^{21} + 48 q^{24} - 104 q^{26} + 12 q^{29} - 8 q^{31} + 72 q^{34} + 72 q^{36} - 156 q^{39} + 348 q^{41} - 98 q^{49} + 108 q^{51}+ \cdots - 192 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 −6.00000 7.00000i 8.00000i −9.00000 0
799.2 2.00000i 3.00000i −4.00000 0 −6.00000 7.00000i 8.00000i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.4.g.d 2
5.b even 2 1 inner 1050.4.g.d 2
5.c odd 4 1 210.4.a.e 1
5.c odd 4 1 1050.4.a.n 1
15.e even 4 1 630.4.a.w 1
20.e even 4 1 1680.4.a.a 1
35.f even 4 1 1470.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.4.a.e 1 5.c odd 4 1
630.4.a.w 1 15.e even 4 1
1050.4.a.n 1 5.c odd 4 1
1050.4.g.d 2 1.a even 1 1 trivial
1050.4.g.d 2 5.b even 2 1 inner
1470.4.a.g 1 35.f even 4 1
1680.4.a.a 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1050, [\chi])\):

\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 676 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 676 \) Copy content Toggle raw display
$17$ \( T^{2} + 324 \) Copy content Toggle raw display
$19$ \( (T + 92)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 168100 \) Copy content Toggle raw display
$41$ \( (T - 174)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 61504 \) Copy content Toggle raw display
$47$ \( T^{2} + 176400 \) Copy content Toggle raw display
$53$ \( T^{2} + 10404 \) Copy content Toggle raw display
$59$ \( (T - 588)^{2} \) Copy content Toggle raw display
$61$ \( (T - 650)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 23104 \) Copy content Toggle raw display
$71$ \( (T + 168)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 372100 \) Copy content Toggle raw display
$79$ \( (T - 1048)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 467856 \) Copy content Toggle raw display
$89$ \( (T - 834)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 12100 \) Copy content Toggle raw display
show more
show less