Properties

Label 210.4.a.e
Level $210$
Weight $4$
Character orbit 210.a
Self dual yes
Analytic conductor $12.390$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [210,4,Mod(1,210)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(210, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("210.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 210.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3904011012\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 5 q^{5} - 6 q^{6} + 7 q^{7} - 8 q^{8} + 9 q^{9} + 10 q^{10} + 12 q^{12} + 26 q^{13} - 14 q^{14} - 15 q^{15} + 16 q^{16} + 18 q^{17} - 18 q^{18} + 92 q^{19} - 20 q^{20}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 3.00000 4.00000 −5.00000 −6.00000 7.00000 −8.00000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 210.4.a.e 1
3.b odd 2 1 630.4.a.w 1
4.b odd 2 1 1680.4.a.a 1
5.b even 2 1 1050.4.a.n 1
5.c odd 4 2 1050.4.g.d 2
7.b odd 2 1 1470.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.4.a.e 1 1.a even 1 1 trivial
630.4.a.w 1 3.b odd 2 1
1050.4.a.n 1 5.b even 2 1
1050.4.g.d 2 5.c odd 4 2
1470.4.a.g 1 7.b odd 2 1
1680.4.a.a 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(210))\):

\( T_{11} \) Copy content Toggle raw display
\( T_{13} - 26 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 26 \) Copy content Toggle raw display
$17$ \( T - 18 \) Copy content Toggle raw display
$19$ \( T - 92 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 410 \) Copy content Toggle raw display
$41$ \( T - 174 \) Copy content Toggle raw display
$43$ \( T - 248 \) Copy content Toggle raw display
$47$ \( T - 420 \) Copy content Toggle raw display
$53$ \( T - 102 \) Copy content Toggle raw display
$59$ \( T + 588 \) Copy content Toggle raw display
$61$ \( T - 650 \) Copy content Toggle raw display
$67$ \( T - 152 \) Copy content Toggle raw display
$71$ \( T + 168 \) Copy content Toggle raw display
$73$ \( T + 610 \) Copy content Toggle raw display
$79$ \( T + 1048 \) Copy content Toggle raw display
$83$ \( T + 684 \) Copy content Toggle raw display
$89$ \( T + 834 \) Copy content Toggle raw display
$97$ \( T - 110 \) Copy content Toggle raw display
show more
show less