L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.650 − 2.00i)3-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)5-s + (−1.70 − 1.23i)6-s + (−0.675 + 2.07i)7-s + (−0.309 − 0.951i)8-s + (−1.15 + 0.841i)9-s − 10-s + (1.92 + 2.69i)11-s − 2.10·12-s + (5.11 − 3.71i)13-s + (0.675 + 2.07i)14-s + (−0.650 + 2.00i)15-s + (−0.809 − 0.587i)16-s + (−1.34 − 0.980i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (−0.375 − 1.15i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.695 − 0.505i)6-s + (−0.255 + 0.785i)7-s + (−0.109 − 0.336i)8-s + (−0.386 + 0.280i)9-s − 0.316·10-s + (0.581 + 0.813i)11-s − 0.607·12-s + (1.41 − 1.03i)13-s + (0.180 + 0.555i)14-s + (−0.167 + 0.516i)15-s + (−0.202 − 0.146i)16-s + (−0.327 − 0.237i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.0320+0.999i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(−0.0320+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.0320+0.999i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), −0.0320+0.999i)
|
Particular Values
L(1) |
≈ |
0.832391−0.859550i |
L(21) |
≈ |
0.832391−0.859550i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809+0.587i)T |
| 5 | 1+(0.809+0.587i)T |
| 11 | 1+(−1.92−2.69i)T |
good | 3 | 1+(0.650+2.00i)T+(−2.42+1.76i)T2 |
| 7 | 1+(0.675−2.07i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−5.11+3.71i)T+(4.01−12.3i)T2 |
| 17 | 1+(1.34+0.980i)T+(5.25+16.1i)T2 |
| 19 | 1+(−1.82−5.60i)T+(−15.3+11.1i)T2 |
| 23 | 1+3.26T+23T2 |
| 29 | 1+(1.95−6.00i)T+(−23.4−17.0i)T2 |
| 31 | 1+(3.74−2.72i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.849−2.61i)T+(−29.9−21.7i)T2 |
| 41 | 1+(2.89+8.90i)T+(−33.1+24.0i)T2 |
| 43 | 1−1.29T+43T2 |
| 47 | 1+(−0.582−1.79i)T+(−38.0+27.6i)T2 |
| 53 | 1+(6.36−4.62i)T+(16.3−50.4i)T2 |
| 59 | 1+(−2.47+7.63i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−3.51−2.55i)T+(18.8+58.0i)T2 |
| 67 | 1−5.61T+67T2 |
| 71 | 1+(11.1+8.10i)T+(21.9+67.5i)T2 |
| 73 | 1+(−4.32+13.3i)T+(−59.0−42.9i)T2 |
| 79 | 1+(1.40−1.02i)T+(24.4−75.1i)T2 |
| 83 | 1+(7.25+5.27i)T+(25.6+78.9i)T2 |
| 89 | 1−13.3T+89T2 |
| 97 | 1+(9.72−7.06i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.03235290782806362180391455517, −12.39325572033259848767265856262, −11.82059917985809652901718436237, −10.54789210899685806361513179030, −9.056881361958071134853068963183, −7.72996963386780191064911582078, −6.44825516578789026062001732864, −5.49954960020109966081034279669, −3.63049455671947928067562183886, −1.60723876779165351558593010346,
3.68825457008564817390724446662, 4.31216959498749642487471087521, 5.92668513505927428335398998632, 7.00559574022296404104842225870, 8.580069537788415620838678924642, 9.754541321505697330857018621409, 11.22861070096016187705338665510, 11.32445193223612458914362496832, 13.25924323600472505776993372078, 13.92606969781827734011197713882