L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.650 − 2.00i)3-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)5-s + (−1.70 − 1.23i)6-s + (−0.675 + 2.07i)7-s + (−0.309 − 0.951i)8-s + (−1.15 + 0.841i)9-s − 10-s + (1.92 + 2.69i)11-s − 2.10·12-s + (5.11 − 3.71i)13-s + (0.675 + 2.07i)14-s + (−0.650 + 2.00i)15-s + (−0.809 − 0.587i)16-s + (−1.34 − 0.980i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (−0.375 − 1.15i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.695 − 0.505i)6-s + (−0.255 + 0.785i)7-s + (−0.109 − 0.336i)8-s + (−0.386 + 0.280i)9-s − 0.316·10-s + (0.581 + 0.813i)11-s − 0.607·12-s + (1.41 − 1.03i)13-s + (0.180 + 0.555i)14-s + (−0.167 + 0.516i)15-s + (−0.202 − 0.146i)16-s + (−0.327 − 0.237i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0320 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0320 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.832391 - 0.859550i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.832391 - 0.859550i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-1.92 - 2.69i)T \) |
good | 3 | \( 1 + (0.650 + 2.00i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.675 - 2.07i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-5.11 + 3.71i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.34 + 0.980i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.82 - 5.60i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 3.26T + 23T^{2} \) |
| 29 | \( 1 + (1.95 - 6.00i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.74 - 2.72i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.849 - 2.61i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.89 + 8.90i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 1.29T + 43T^{2} \) |
| 47 | \( 1 + (-0.582 - 1.79i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (6.36 - 4.62i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.47 + 7.63i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.51 - 2.55i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 5.61T + 67T^{2} \) |
| 71 | \( 1 + (11.1 + 8.10i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.32 + 13.3i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (1.40 - 1.02i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (7.25 + 5.27i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 13.3T + 89T^{2} \) |
| 97 | \( 1 + (9.72 - 7.06i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03235290782806362180391455517, −12.39325572033259848767265856262, −11.82059917985809652901718436237, −10.54789210899685806361513179030, −9.056881361958071134853068963183, −7.72996963386780191064911582078, −6.44825516578789026062001732864, −5.49954960020109966081034279669, −3.63049455671947928067562183886, −1.60723876779165351558593010346,
3.68825457008564817390724446662, 4.31216959498749642487471087521, 5.92668513505927428335398998632, 7.00559574022296404104842225870, 8.580069537788415620838678924642, 9.754541321505697330857018621409, 11.22861070096016187705338665510, 11.32445193223612458914362496832, 13.25924323600472505776993372078, 13.92606969781827734011197713882